世界银行-使用重新加权和贫困预测模型校正电话调查贫困估计中的抽样和无响应偏差(英)-2023.12..docx

上传人:夺命阿水 文档编号:1243159 上传时间:2024-04-12 格式:DOCX 页数:43 大小:275.14KB
返回 下载 相关 举报
世界银行-使用重新加权和贫困预测模型校正电话调查贫困估计中的抽样和无响应偏差(英)-2023.12..docx_第1页
第1页 / 共43页
世界银行-使用重新加权和贫困预测模型校正电话调查贫困估计中的抽样和无响应偏差(英)-2023.12..docx_第2页
第2页 / 共43页
世界银行-使用重新加权和贫困预测模型校正电话调查贫困估计中的抽样和无响应偏差(英)-2023.12..docx_第3页
第3页 / 共43页
世界银行-使用重新加权和贫困预测模型校正电话调查贫困估计中的抽样和无响应偏差(英)-2023.12..docx_第4页
第4页 / 共43页
世界银行-使用重新加权和贫困预测模型校正电话调查贫困估计中的抽样和无响应偏差(英)-2023.12..docx_第5页
第5页 / 共43页
点击查看更多>>
资源描述

《世界银行-使用重新加权和贫困预测模型校正电话调查贫困估计中的抽样和无响应偏差(英)-2023.12..docx》由会员分享,可在线阅读,更多相关《世界银行-使用重新加权和贫困预测模型校正电话调查贫困估计中的抽样和无响应偏差(英)-2023.12..docx(43页珍藏版)》请在课桌文档上搜索。

1、PaUOLnnValnsoosQ.2-qndPolicyResearchWorkingPaper10656CorrectingSamplingandNonresponseBiasinPhoneSurveyPovertyEstimationUsingReweightingandPovertyProjectionModelsP ZOfnV alnsoosQ.2-qndKexinZhangShinyaTakamatsuNobYoshidaworldBankgroupxt-rPovertyandEquityGlobalPracticeDecember2023PolicyResearchWorkingP

2、aper10656AbstractTo monitor the evolution of household living conditions during the COVID-19 pandemic, the World Bank conducted COVID-19 High-Frequency Phone Su,eys in around 80 countries. Phone sunfeys are cheap and easy to implement, but they have some major limitations, such as the absence of PoV

3、Crty data, sampling bias due to incomplete telephone coverage in many developing countries, and frequent nonresponses to phone interviews. To overcome these limitations, the World Bank conducted pilots in 20 countries where the SUrVey ofWellbeing via Instant and Frequent Tracking, a rapid povem, mon

4、itoring tool, was adopted to estimate poverty rates based on 10 to 15 simple questions collected via phone interviews, and where sampling weightswere adjusted to correct the sampling and nonresponse bias.This paper examines whether reweighting procedures andmethodology can eliminate the bias in povc

5、rtr estimation based on the COVID-19 High-Frequency Phone Surveys. Experiments using artificial phone survey samples show that (i) reweighting procedures cannot fully eliminate bias in povert estimates, as previous research has demonstrated, but (ii) when combined with SUrVey of Wellbeing Via Instan

6、t and Frequent Tracking PoVerty projections, they effectively eliminate bias in poverty estimates and otherstatistics.hispaperisaproductofthePovertyandEquityGlobalPractice.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundthe

7、world.PolicyResearchWorkingPapersarealsopostedontheWebatTheauthorsmaybecontactedatkzhang2worldbank.org.TbePolieyResearchWorkingPaperSeriesdisseminatestfjefindingsofuforkinprogresstoencouragetbeexchanfofideasaboutdeivlopmentissues.Anobecihfeoftheseriesisto般thefindingoutquickfy,evifthepresentationsare

8、lessthanJulbfpolished.ThepaperscanythenamesOftbeauthorsandshouldbecitedaccordingly.Thefinding,interpretations,andconclusionsexpressedinthispaperareentircbfthoseoftheaut!,wrs.TheydonotnecessarilyrfpnsvnttheviewsoftheInternationalBankforKecoftstnictionandDert,omenf/WorldBa欣anditsafftiaterPSWtoeliminat

9、esamplingbias,asetofassumptions,likestrongignorability,needtobesatisfied,whichcannotbeeasilytested,forwhichnon-PSWservesasacomplementforweightingpurposes.Second,non-PSWapproachesmatchthemeansofkeyindicatorsbetweenaphone/webSUrVeyandareferencesurey,butthereisnoguaranteethatthedistributionsoftheseindi

10、catorsarealsomatched.PSWapproaches,bycontrast,matchthedistributionofpropensityscores.Sincebothapproacheshavetheirownstrengths,conductingbothPSWandnon-PSWadjustmentsisreasonable.ThispaperinvestigateswhetherreweightingcancorrectthebiasofpovertyprojectionsproducedbytheSWIFTmethodology.Theperformanceofr

11、eweightingtechniquesdiffersbydataandtargetindicatorsthatwerematched,andthereisagreementintheliteraturethatreweightingtechniquesreducethebiasesintargetstatisticsyetdonoteliminatethem(Lee(2006)andDrezeandSomanchi(2023).DrezeandSomanchi(2023)createdbiasedsamplesbydroppingpoorerhouseholdsfromahouseholdS

12、UrVeyandtestedwhetheranon-PSWreweightingtechnique(maximumentropyreweighting,ormaxentropy)canreducebiasesinpovertyratesandmeanhouseholdexpenditures.1thoughthebiasesinpovertyrateestimatesandmeansofhouseholdexpendituresdeclined,substantialproportionsremained.However,existingliteraturelacksanassessmento

13、fhowwellreweightingtechniquescanreducethebiasesofpovcrtrprojectionsproducedbySWIFToranyotherPOvCrtyprojectionmethod.UsingphoneorWCbsurveystoestimatepovertynecessitatestheuseofPoVertyprojectionmethods.DrezeandSomanchi(2023)usedactualconsumptionandincomedataandshowedthatalargebiasinthepovertyrateandme

14、anhouseholdexpenditureremainsevenafterreweightingbutdidnotassessifreweightingcombinedwithpovcm,projectionmethodsiseffectiveinreducingthebias.Infoct,ourstudyfindsthattheperformanceofreweightinginestimatingpovertjrcanbeimprovedwhencombinedwithpovertyimputationmethodssuchasSWIFT.ExperimentsThispaperexa

15、mineswhether,andifso,towhatextent,acombinationofreweightingtechniquesandtheSWIFTpovertyprojectionmethodOlOgycaneliminatesamplingbiasesinpovertyestimatesbasedonbiasedsurveysamples.Toseethis,wcfirstusereferencehouseholdsurveysinRwanda,StLucia,andUgandaandconstructsubsamplesbyselectinghouseholdswithatl

16、eastamobileorlandlinephone.Thesesamplesaresubjecttosamplingbiasbyconstruction.WithoutreweightingandSWIFTpovertyprojections,thepovertyratesinthesesubsamplcsofphoneownersarclowerthanthoseinthefullsamples.WethenexaminewhetherreweightingandSWIFpovertyprojectionscancorrectfortheabovementionedbias.Phonean

17、dwebSUrVeydatacollectionsfacesamplingandnonresponsebiases,buttheabovementionedexperimentsonlyfocusonsamplingbiasesthatarisefromunevenphoneownership.TounderstandrheabilityoftheSWIFTandreweightingtechniquestoadjustfbrnonresponsebias,thispaperconductsanadditionalexperimentusingthesampleofEthiopiaHigh-F

18、requencyPhoneSurveyround7(HFPS7),whichisasubsampleofthe2018/19EthiopiaSocioeconomicSUrVeyround4(ESS4).SincethissubsampleofESS4includesonlyphoneowners,itissubjecttosamplingbias.Also,sinceitincludesonlyhouseholdsofESS4thatrespondedtotheHFPS7,itisalsosubjecttononresponsebias.Usingthissubsample,Weconduc

19、tthesameanalysisasabovetoassesswhetherreweightingtechniquesandSWIFTcancorrectthebiasinpovertyestimatesarisingfrombothsamplingandnonresponsebiases.Thispaperisorganizedasfollows.SectionIIintroducestheSWIFTpovertyprojectionmethodOlOgyandreweightingtechniques,andSectionIIIdisplaysresultsfromfourexperime

20、ntalstudies(SaintLucia,Rwanda,Uganda,andEthiopia).SectionIVconcludeswithanassessmentofacombinationofreweighringandtheSWIFT-basedpovertyprojectionmodelineliminatingthebiasinpovertyrestimationbasedonthef()urcasestudies.II. SWIFTandReweightingMethodologyII.1.SllHFTpovertyprojectionmetbodoloSWIFTisanapp

21、licationofSuney-to-Sureyimputationtechniques(S2S)tomonitorpovertrrapidly.SWIFTtrainsanimputationmodelinatrainingdatasetbyregressinghouseholdcxpcnditurcs/incomcsonpovertyproxies.Householdexpendituresandpovemrratesarethenimputedinanotherdataset,calledoutputdata,“bypluggingpovertyproxiesoftheoutputdata

22、intothemodel.Figure1illustratestheprocess.TherearetwokeyassumptionsinthestandardSvnFTmethodology.First,therelationshipbetweenhouseholdincomeorexpenditureandpovertycorrelatesinrheoutputdatacanbeexpressedinequation(1):lnyh0=Xhoo+UhO(1)wherel0N(0,0)whereIny0referstoanaturallogarithmofthehouseholdincome

23、orexpenditureofhouseholdbintheoutputdatao.Xfioisa(Ze1)vectorofpovertycorrelatesofhouseholdhntheoutputdata,o.0isa(k1)vectorofcoefficientsofpovertycorrelates(x0).UfioreferstoaresidualandisoftenassumedtofollowanormaldistributionOfN(0,0O)JTheoutputdataincludesthePOVertyproxydata冲。%=butdocsnotinclude1Thi

24、snormaldistributionandlinearity-canberelaxed.Forthesakeofexposition,normaldistributionisassumed.householdexpendituresZnyl0)=1whicharetobeimputed.Forthesakeofexposition,therelationshipisassumedtobelinear,butthisconditioncanberelaxed(Yoshidaetal.,2022a).Figure11llustrationofbowtheSI11FTworksDatasetJny

25、krtoh.Relationship如乂%;=M嫄-M九饶MModelstabilityholdsImputationb:.i7i(,uImputeddata11nyL.xk)fc.SNote:Authors*illustration.ThesecondkeyassumptionisthattherelationshipbetweenhouseholdexpendituresandPOVertyproxiesinthetrainingdataalsofollowsequation(1).Thisassumptioniscalled“modelStabiIity“implyingthatthem

26、odeldocsnotchangefromthetrainingandoutputdata.SWIFTestimatesparametersinequation(15),(0,趣),andtheirdistributions,usingthetrainingdataset,drawthem(0r,偷)randomlyfromtheirestimateddistributions,andsubstitutesthemintoequation(1)toimputehouseholdexpendituresforallhouseholdsintheoutputdata.SWIFTrepeatsthisimputation(typically20-100times),resultingin20to100vectorsofhouseholdexpenditures)intheoutputdata(witheachvectorincludingtheexpenditurefcrallhouseholds).Povertyrandinequalitymeasuresareestimated

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号