《吸收塔的实用工艺计算.doc》由会员分享,可在线阅读,更多相关《吸收塔的实用工艺计算.doc(15页珍藏版)》请在课桌文档上搜索。
1、word第3章 吸收塔的工艺计算对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,20时水的有关物性数据如下:密度为 粘度为 =3.6 kg/(mh)外表X力为 查手册得时氨在水中的扩散系数为 混合气体的平均摩尔质量为混合气体的平均密度为时混合气体流量: 混合气体的粘度可近似取为空气的粘度,查手册得时空气的黏度为:由手册查得,时氨在空气中的扩散系数为:有手册查得氨气的溶解度系数为计算得亨利系数相平衡常数为进塔气相摩尔比为:出塔气相摩尔比为:对于纯溶剂吸收过程,进塔液相组成为:(清水)惰性气体流量:最小液气比:取实际液气比为最小液气比的2倍,如此可得吸收剂用量为:V单位时间内通
2、过吸收塔的惰性气体量,kmol/s;L单位时间内通过吸收塔的溶解剂,kmol/s;Y1、Y2分别为进塔与出塔气体中溶质组分的摩尔比,kmol/kmol;X1、X2分别为进塔与出塔液体中溶质组分的摩尔比,kmol/kmol;填料塔直径的计算采用式子计算 的计算可以采用EcKert通用关联图查图计算,但结果不准确,且不能用于计算机连续计算,因此可采用贝恩-霍根公式计算:气体质量流量:液相质量流量可近似按纯水的流量计算,即:式中 代入以上数据解得泛点气速 取 如此塔径 圆整后取 在50%-85%之间,所以符合要求.有 即符合要求.对于直径不超过75的散装填料塔,取最小润湿速率为:本设计中填料塔的喷淋
3、密度为:最小喷淋密度: 说明填料能获得良好的润湿效果.经以上校核可知,填料塔直径选用D=500mm能较好地满足设计要求。传质过程的影响因素十分复杂,对于不同的物系、不同的填料与不同的流动状况与操作条件, 传质单元高度迄今为止尚无通用的计算方法和计算公式.目前,在进展设计时多项选择用一些准数关联式或经验公式进展计算,其中应用较普遍的是修正的恩田()公式:查得液体质量通量为气膜吸收系数有下式计算:气体质量通量为:液膜吸收系数由下式计算:由 ,查得如此因为,所以必须对和进展校正,校正计算如下:由 ,得如此气相总传质系数为:由解吸因数为气相总传质单元数为:由得设计取填料层高度为查对于阶梯环填料, h/
4、D=815, 取,如此 计算得填料塔高度为3000mm,故不需分段。塔上部空间高度可取1.5m, 塔底液相停留时间按5min考虑, 如此塔釜所占空间高度为考虑到气相接收所占的空间高度,底部空间高度可取1.5m,所以塔的附属高度可以取3m.所以塔高为 和再分布器的选择和计算液体分布装置的种类多样,有喷头式、盘式、管式、槽式、与槽盘式等。工业应用以管式、槽式、与槽盘式为主。性能优良的液体分布器设计时必须满足以下几点:液体分布均匀 评价液体分布均匀的标准是:足够的分布点密度;分布点的几何均匀性;降液点间流量的均匀性。分布点密度。液体分布器分布点密度的选取与填料类型与规格、塔径大小、操作条件等密切相关
5、,各种文献推荐的值也相差较大。大致规律是:塔径越大,分布点密度越小;液体喷淋密度越小,分布点密度越大。对于散装填料,填料尺寸越大,分布点密度越小。表3-1列出了散装填料塔的分布点密度推荐值表3-1 Eckert的散装填料塔分布点密度推荐值塔径,mm分布点密度,塔截面D=400330D=750170D120042分布点的几何均匀性。分布点在塔截面上的几何均匀分布是较之分布点密度更为重要的问题。设计中,一般需通过反复计算和绘图排列,进展比拟,选择较佳方案。分布点的排列可采用正方形、正三角形等不同方式。降夜点间流量的均匀性。为保证各分布点的流量均匀,需要分布器总体的合理设计、精细的制作和正确的安装。
6、高性能的液体分布器,要求个分布点与平均流量的偏差小于6%。操作弹性大 液体分布器的操作弹性是指液体的最大负荷与最小负荷之比。设计中,一般要求液体分布器的操作弹性为24,对于液体负荷变化很大的工艺过程,有时要求操作弹性达到10以上,此时,分布器必须特殊设计。自由截面积大 液体分布器的自由截面积是指气体通道占塔截面积最小应在35%以上。其他 液体分布器应结构紧凑、占用空间小、制造容易、调整和维修方便。按Eckert建议值,D1200mm时,喷淋点密度为42点m2,因该塔液相负荷较大,设计取喷淋点密度为100点m2。1液体分布器选型 本设计中塔径较小,故此选用管式液体分布器。2分布点密度计算 该塔的
7、塔径较小,且填料的比外表积较大,故应选较大的分布点密度。设计中取分布点密度为200点/m2。布液点数为 点 按分布点几何均匀与流量均匀的原如此,进展布点设计。设计结果为:主管直径,支管直径.采用7根支管,支管中心距为65mm,采用正方形排列,实际布点数为点。布液点示意图如下:图2 管式液体分布器布液点示意图3布液计算 由 取,如此 m设计取 液体保持管高度取布液孔直径为5.3mm,如此液位保持管中的液位高度为:设计取液位高度 本装置的直径较小可采用简单的进气分布装置,同时排放的净化气体中的液相夹带要求严格,应设除液沫装置,为防止填料由于气流过大而是翻,应在填料上放置一个筛网装置,防止填料上浮.
8、液体在填料塔顶喷淋的均匀状况是提供塔内气液均匀分布的先决条件,也是使填料达到预期别离效果的保证。为此,分布器设计中应注意以下几点:1、为保证液体在塔截面上均布,颗粒型散装填料的喷淋点数为4080个/m2环形填料自分布性能差应取高值,此外,为减少壁流效应,喷淋孔的分布应使近塔壁520区域内的液体流量不超过总液量的10。规整填料一般为100200个/喷淋点。2、喷淋孔径不宜小于2,以免引起堵塞,孔径也不宜过大,否如此液位高度难维持稳定。液体分布器有以下几种形式:1. 多孔型液体分布器多孔型液体分布器系借助孔口以上的液层静压或泵送压力使液体通过小孔注入塔内。根据直管液量的大小,在直管下方开24排对称
9、小孔,孔径与孔数依液体的流量X围确定,通常取孔径26,孔的总面积与与进液管截面积大致相等,喷雾角根据塔径采用30或45,直管安装在填料层顶部以上约300。此形分布器用于塔径600800,对液体的均布要求不高的场合。根据要求,也可以采用环形管式多孔分布器。3. 排管式多孔分布器支管上孔径一般为35,孔数依喷淋点要求决定。支管排数、管心距与孔心距依塔径和液体负荷调整。一般每根支管上可开13排小孔,孔中心线与垂直线的夹角可取15、30或45等,取决于液流达到填料外表时的均布状况。主管与支管直径由送液推动力决定,如用液柱静压送液,中间垂直管和水平主管内的流速为0.20.3m/s,支管流速取为0.150
10、.2m/s;采用泵送液如此流速可提高。液体再分布器的作用是将流到塔壁近旁的液体重新聚集并引向中央区域。填料层较高时,应分段安装,段与段间设液体分布器。比拟完善的装置可以做成像上述升气管筛板型液体分布器的样子,只是要在各升气管口之上加笠形罩,以防止从上段填料层底部落下的液体进入升气管。平盘底部各处的液层高度大体一样,于是各处筛孔所流下的液体速度大致一样。本设计中塔高为6米,不需要分段,故不需要安装液体再分布器填料支撑板既要具备一定的机械强度以承受填料层与其所持液体的重量,又要留出足够的空隙面积空气、液流量,气体通过支承板空隙的线速不能不等于通过填料层空隙的线速度,否如此便会在填料层内尚未发生液泛
11、之前,已在支撑板处发生液泛。一般要求支承板的自由截面积之比大于填料层的空隙率。最简单的支承装置是用扁钢条制作的格栅或 开孔的金属板。格栅的间隙或孔板的孔径如果过大,容易使填料落下,此时可于支承装置上先铺一层尺寸较大的同类填料。气体喷射支承板,适于在大直径塔中使用,从塔底上升的气体通过水平局部的孔流下。通气孔的总截面积可以做到大于塔的截面积,这种设计使得气流阻力小而通过能力大,并排除了在支承板上发生液泛的危险。填料压板系藉自身质量压住填料但不致压坏填料;限制板的质量轻,需固定于塔壁上。一般要求压板或限制板自由截面分率大于70。1气体进出口装置填料塔的气体进口既要防止液体倒灌,更要有利于气体的均匀
12、分布。对500mm直径以下的小塔,可使进气管伸到塔中心位置,管端切成45向下斜口或切成向下切口,使气流折转向上。对1.5m以下直径的塔,管的末端可制成下弯的锥形扩大器,或采用其它均布气流的装置。气体出口装置既要保证气流畅通,又要尽量除去被夹带的液沫。最简单的装置是在气体出口处装一除沫挡板,或填料式、丝网式除雾器,对除沫要求高时可采用旋流板除雾器。本设计中选用折板除雾器。折板除雾器的结构简单有效,除雾板由的角钢组成,板间横向距离为25mm,垂直流过的气速可按下式计算:式中 气速,m; 液相与气相密度,;系数,0.085-0.10;本设计中取 ,如此流过的气速所需除雾板组的横断面为 由上式确定的气
13、速X围,除雾板的阻力为49-98pa,此时能除去的最小雾滴直径约为0.05mm,即50.2排液装置液体出口装置既要使塔底液体顺利排出,又能防止塔内与塔外气体串通,常压吸收塔可采用液封装置。常压塔气体进出口管气速可取1020m/s高压塔气速低于此值;液体进出口气速可取0.81.5m/s必要时可加大些管径依气速决定后,应按标准管规定进展圆整.填料塔的的压力降为:(1)气体进出口压降:取气体进出口接收的内径为200mm,如此气体的进出口流速为如此进口压强为 突然扩大 =1出口压强为 突然缩小 =0.5(2)填料层压降:气体通过填料层的压降采用Eckert关联图计算,其中横坐标为查得纵坐标为查得填料层
14、压力降(3)其他塔内件的压降:其他塔内件的压降较小,在此处可以忽略.所以吸收塔的总压降为4持液量计算 持液量计算方法较多,但大局部都是对拉西环填料的测试数据进展关联的公式。本设计采用Leva与大竹、冈田的关联式:Leva关联式: 式中 总持液量,液体填料; L液相流率,;填料当量直径,m;大竹、冈田发表的持液量关联式: 式中 动持液量, 液体填料;填料的公称直径,m;液相密度,;液相空塔线速度, m/s;液相粘度,重力加速度,9.81 ;上述两式的计算误差为20% ,本设计中填料的持液量为:对于散装填料,其泛点率的经验值为:所以符合。气体动能因子简称F因子,其定义为 其中为空塔气速.本设计中气
15、体动能因子为气能因子在常用的X围内计算过程如下所选管为热轧无缝钢管校核管内流速如此雷诺数 局部阻力损失:三个标准截止阀全开 ; 三个标准90弯头 ;管路总压头损失 扬程流量经查陈敏恒 丛德滋 方图南 齐鸣斋编化工原理P293附表八泵与风机,P296型号IS50-32-200泵适宜。本设计中填料塔有多处接收,在此分别以液体进料管和气体进料管的管径计算为例进展说明。相关数据查参考书1、液体进料管进料管的结构类型很多,有直管进料管、弯管进料管、T型进料管。本设计采用直管进料管,管径计算如下:所以查参考书取管径为流速校正:在正常X围内.2、气体进料管采用直管进料。取气速设计取进料管管径所以查参考书取管径为15 / 15