2024年全球甲烷追踪器(英)_市场营销策划_2024年市场报告-3月第4周_【2024研报】重点报.docx

上传人:夺命阿水 文档编号:1399909 上传时间:2024-06-15 格式:DOCX 页数:35 大小:110.02KB
返回 下载 相关 举报
2024年全球甲烷追踪器(英)_市场营销策划_2024年市场报告-3月第4周_【2024研报】重点报.docx_第1页
第1页 / 共35页
2024年全球甲烷追踪器(英)_市场营销策划_2024年市场报告-3月第4周_【2024研报】重点报.docx_第2页
第2页 / 共35页
2024年全球甲烷追踪器(英)_市场营销策划_2024年市场报告-3月第4周_【2024研报】重点报.docx_第3页
第3页 / 共35页
2024年全球甲烷追踪器(英)_市场营销策划_2024年市场报告-3月第4周_【2024研报】重点报.docx_第4页
第4页 / 共35页
2024年全球甲烷追踪器(英)_市场营销策划_2024年市场报告-3月第4周_【2024研报】重点报.docx_第5页
第5页 / 共35页
点击查看更多>>
资源描述

《2024年全球甲烷追踪器(英)_市场营销策划_2024年市场报告-3月第4周_【2024研报】重点报.docx》由会员分享,可在线阅读,更多相关《2024年全球甲烷追踪器(英)_市场营销策划_2024年市场报告-3月第4周_【2024研报】重点报.docx(35页珍藏版)》请在课桌文档上搜索。

1、ContentsBackground4Methaneemissionestimates5Upstreamanddownstreamoilandgas5Incompletecombustionofflares9Coalminemethane10Emissionsfromfuelcombustion(enduse)11Wasteandagriculture13Methaneabatementestimates14Marginalabatementcostcurvesforoilandgas14Well-headpricesusedinnetpresentvaluecalculation19Marg

2、inalabatementcostcurvesforcoalminemethane20Energypricesusedinnetpresentvaluecalculation24Projectionsofenergy-relatedmethaneemissionsandassessedtemperaturerises.26Glossary28Oilandgasabatementtechnologies28Coalminemethaneabatementtechnologies30Policyoptions33Policyexplorer34References38BackgroundTheIE

3、A,sestimatesofmethaneemissionsareproducedwithintheframeworkoftheIEA,sGlObalEnerqVandCIimateModnl(GEC).Since1993,theInternationalEnergyAgency(IEA)hasprovidedmedium-tolong-termenergyprojectionsusingthislarge-scalesimulationmodeldesignedtoreplicatehowenergymarketsfunctionandgeneratedetailedsector-by-se

4、ctorandregion-by-regionprojectionsfortheWorldEnergyOutlook(WEO)scenarios.Updatedeveryyear,themodelconsistsofthreemainmodules:finalenergyconsumption(coveringresidential,services,agriculture,industry,transportandnon-energyuse);energytransformationincludingpowergenerationandheat,refineryandothertransfo

5、rmation(suchashydrogenproduction);andenergysupply(oil,naturalgasandcoal).Outputsfromthemodelincludeenergyflowsbyfuel,investmentneedsandcosts,greenhousegasemissionsandend-userprices.TheGECisaverydata-intensivemodelcoveringthewholeglobalenergysystem.Muchofthedataonenergysupply,transformationanddemand,

6、aswellasenergypricesisobtainedfromtheIEA,sowndatabasesofenergyandeconomicstatistics(andthroughcollaborationwithotherinstitutions.Forexample,fortheNetZeroby2050:ARoadmapfortheGlobalEnergySectorpublication,resultsfromboththeWEOandEnerqyTeChnolOqVPerSDeCtiVeS(ETP)modelshavebeencombinedwiththosefromtheI

7、nternationalInstituteforAppliedSystemsAnalysis(IIASA)一inparticulartheGreenhouseGas-AirPollutionInteractionsandSynergies(GAINS)model-toevaluateairpollutantemissionsandresultanthealthimpacts.And,forthefirsttime,resultswerecombinedwiththeIIASA,sGlobalBiosphereManagementModel(G1.OBIOM)toprovidedataonlan

8、duseandnetemissionsimpactsofbioenergydemand.TheGECalsodrawsdatafromawiderangeofexternalsourceswhichareindicatedintherelevantsectionsoftheGECdocumentation.ThecurrentversionofGECcoversenergydevelopmentsupto2050in29regions.DependingonthespecificmoduleoftheWEM,individualcountriesarealsomodelled:16indema

9、nd;113inoilandnaturalgassupply;and32incoalsupply(seeAnnexAoftheGECdocumentation).MethaneemissionestimatesTheGlobalMethaneTrackercoversallsourcesofmethanefromhumanactivity.Fortheenergysector,theseareIEAestimatesformethaneemissionsfromthesupplyoruseoffossilfuels(coal,oilandnaturalgas)andfromtheuseofbi

10、oenergy(suchassolidbioenergy,liquidbiofuelsandbiogases).Fornon-energysectors-waste,agricultureandothersources-referencevaluesbasedonpubliclyavailabledatasourcesareprovidedtoenableafullerpictureofmethanesources.UpstreamanddownstreamoilandgasOurapproachtoestimatingmethaneemissionsfromglobaloilandgasop

11、erationsreliesongeneratingcountry-specificandproductiontype-specificemissionintensitiesthatareappliedtoproductionandconsumptiondataonacountry-bycountrybasis.OurstartingpointistogenerateemissionintensitiesforupstreamanddownstreamoilandgasintheUnitedStates(Table1).TheUSGreenhouseGasInventory(USEPA5202

12、3)isusedalongwithawiderangeofotherpublicly-reported,credibledatasources.Thehydrocarbon-,segment-andproductionspecificemissionintensitiesarethenfurthersegregatedintofugitive,ventedandincompleteflaringemissionstogiveatotalof19separateemissionintensities.Table1.Categoriesofemissionsourcesandemissionsin

13、tensitiesintheUnitedStatesHydrocarbonSegmentProductiontypeEmissionstypeIntensity(massmethane/massoilorgas)OilUpstreamOnshoreconventionalVented0.36%OilUpstreamOnshoreconventionalFugitive0.09%OilUpstreamOffshoreVented0.36%OilUpstreamOffshoreFugitive0.09%OilUpstreamUnconventionaloilVented0.72%OilUpstre

14、amUnconventionaloilFugitive0.18%OilDownstreamVented0.004%OilDownstreamFugitive0.001%OilOnshoreconventionalIncomplete-flare0.06%OilOffshoreIncomplete-flare0.01%OilUnconventionalIncomplete-flare0.04%NaturalgasUpstreamOnshoreconventionalVented0.29%NaturalgasUpstreamOnshoreconventionalFugitive0.11%Natur

15、algasUpstreamOffshoreVented0.29%HydrocarbonSegmentProductiontypeEmissionstypeIntensity(massmethane/massoilorgas)NaturalgasUpstreamOffshoreFugitive0.11%NaturalgasUpstreamUnconventionalgasVented0.43%NaturalgasUpstreamUnconventionalgasFugitive0.17%NaturalgasDownstreamVented0.15%NaturalgasDownstreamFugi

16、tive0.10%TheUSemissionsintensitiesarescaledtoprovideemissionintensitiesinallothercountries.Thisscalingisbaseduponarangeofauxiliarycountry-specificdata.Fortheupstreamemissionintensities,thescalingisbasedontheageofinfrastructure,typesofoperatorwithineachcountry(namelyinternationaloilcompanies,independ

17、entcompaniesornationaloilcompanies)andaverageflaringintensity(flaringvolumesdividedbyoilproductionvolumes).Fordownstreamemissionintensities,country-specificscalingfactorswerebasedupontheextentofoilandgaspipelinenetworksandoilrefiningcapacityandutilisation.Figure1Methodologicalapproachforestimatingme

18、thaneemissionsfromoilandgasoperationsMeasurementstudiesGovernanceindicatorsRuleoflaw.regulation.SatellitereadingsUSemissionsintensitiesCountryemissionsintensitiesActivitydataCountry-levelmethaneemissionsIndustryindicatorsOperator;age;flaring;pipelinelengthCountryscalingfactorsIEA.CCBY4.0.Thestrength

19、ofregulationandoversight,incorporatinggovernmenteffectiveness,regulatoryqualityandtheruleoflawasgivenbytheWorldwideGovernanceIndicatorscompiledbytheWorldBank(2023),affectsthescalingofallintensities.Someadjustmentsweremadetothescalingfactorsinalimitednumberofcountriestotakeintoaccountotherdatathatwer

20、emadeavailable(wherethiswasconsideredtobesufficientlyrobust),suchascomprehensivemeasurementstudies.Thisincludesdataonsatellite-detectedlargeemittersandubasin-levelinversions,lwhichusesatellitereadingstoassessmethaneemissionsacrossawideroilandgasproductionregion,basedondataprocessingbyKayrros,anearth

21、observationfirm(seeBox1.6).Italsoincludesspecificpolicyeffortstocontrolmethaneemissionsfromtheoilandgassectors,astrackedintheIEAPOIiCieSDatabase.Table2providestheresultantscalingfactorsinthetopoilandgasproducers(thecountrieslistedcover90%ofglobaloilandgasproduction).Thesescalingfactorsaredirectlyuse

22、dtomodifytheemissionsintensitiesinTable1.Forexample,theventedemissionintensityofonshoreconventionalgasproductionintheRussianFederation(hereafter,Russia)istakenas0.29%1.7=0.49%.Theseintensitiesarefinallyappliedtotheproduction(forupstreamemissions)orconsumption(fordownstreamemissions)ofoilandgaswithin

23、eachcountry.Table2.ScalingfactorsappliedtoemissionintensitiesintheUnitedStatesCountryOil&gasproductionin2023OilDownstreamGasmtoeUpstreamUpstreamDownstreamUnitedStates17241.01.01.01.0Russia10782.31.31.71.1SaudiArabia6430.80.40.60.4Canada4521.00.51.00.5Iran4253.10.91.40.9China4091.50.91.10.8UnitedArab

24、2491.40.71.20.6EmiratesIraq2311.40.50.80.5Qatar2271.10.61.00.6Norway2010.00.00.00.0Brazil1961.71.31.71.3Kuwait1631.40.71.10.7Algeria1584.71.42.11.4Australia1520.80.50.60.5Mexico1331.60.91.10.8Kazakhstan1162.81.42.51.4Nigeria1063.81.82.41.8Oman911.60.71.00.7Malaysia902.21.11.51.1Indonesia853.21.52.11

25、.5Egypt852.41.01.31.0Turkmenistan7715.84.56.64.5Argentina752.51.11.81.11.ibya723.71.01.71.0India673.21.62.11.5Box1IntegratingemissionsestimatesfromsatellitesTheGlobalMethaneTrackerintegratesresultsfromallpublicly-reported,crediblesourceswheredatahasbecomeavailable.Thisincludesemissionsdetectedbysate

26、llites.Changesintheatmosphericconcentrationofmethanecanbeusedtoestimatetherateofemissionsfromasourcethatwouldhavecausedsuchachange.ThisisdonebasedondataprocessingbyKaarros,anearthobservationfirm,toconvertreadingsofconcentrationstoidentifylargesourcesofemissionsfromoilandgasoperations.Reportedemissio

27、nsencompassmethanesourcesabove5tonnesperhour.OilandgasemissionsdetectedbysatellitesarereportedasaseparateitemwithintheMethaneTracker.Theseestimatesarebasedonaconservativescalingupofemissioneventsdirectlydetectedtotakeintoaccounttheperiodwithintheyearwhenobservationscouldbemade.Thisiscarriedoutforall

28、regionswhereobservationswerepossibleforatleast20daysintheyear.Theincreasingamountofdataandinformationfromsatelliteswillcontinuetoimproveglobalunderstandingofmethaneemissionslevelsandtheopportunitiestoreducethem.However,satellitesdohavesomelimitations: Existingsatellitesstruggletoprovidemeasurementso

29、verequatorialregions,northernareas,mountainranges,snowyorice-coveredregionsorforoffshoreoperations.Thismeansthattherearealargenumberofmajorproductionareaswhereemissionscannotbeobserved. Existingsatellitesshouldbeabletoprovidemethanereadingsgloballyonadailybasisbutthisisnotalwayspossiblebecauseofclou

30、dcoverandotherweatherconditions.During2023therewerearound70countrieswheremethaneemissionsfromoilandgasoperationscouldbedetectedforatleast20days.1.argeemissioneventswereobservedin20ofthesecountriesin2023.CoveragetendstobebestintheMiddleEast,AustraliaandpartofCentralAsia,whereadirectmeasurementcouldbe

31、madeevery3-5days.Ontheremainingdays,cloudcoverageorotherinterferencepreventedmeasurementoperations. Theprocessofusingchangesintheatmosphericconcentrationofmethanetoestimateemissionsfromaparticularsourcecanrelyonalargelevelofauxiliarydataandbesubjecttoahighdegreeofuncertainty.Thesatellitereadingsincl

32、udedintheGlobalMethaneTrackercurrentlyprovidedataonlyforlargeemittingsources.Thisis,ofcourse,subjecttoahighdegreeofuncertainty,butensuresthatcountry-by-countyestimatesprovideacomprehensivepictureofallmethaneemissionssources.Asadditionaldatabecomesavailablefrommeasurementcampaigns-whetherrecordedfrom

33、groundoraerialprocessesorbysatellites-thesewillbeincorporatedintotheGlobalMethaneTrackerandestimatesadjustedaccordingly.IncompletecombustionofflaresOurapproachtoestimatingmethaneemissionsfromflaringreliesongeneratingcountry-specificandproductiontype-specificcombustionefficienciesthatareappliedtoflar

34、ingdataonacountry-by-countrybasis.GlobalestimatesofflaredvolumesofnaturalgasarebasedonreporteddatafromtheWorldBanksGlobalGasFlaringReductionPartnership.ThesedataaretakenfromtheNationalOceanicandAtmosphericAdministration(NOAA)andthePayneInstitute(WorldBank,2023).Combustionefficienciescanreduceasaresu

35、ltoflowerproductionrates,highandvariablewinds,andpoormaintenanceresultingfromlackofregulatorypolicy,enforcementorcompanypolicy(Johnson,2001;Kostiuk,2004).Weestimatecombustionbaseduponarangeofauxiliarycountry-specificdata: Oilproductiontype(unconventionalonshore,conventionalonshoreandoffshore),compan

36、ytypeandproductionstart-upyear,basedonRystadEnergyUCubedata.CompanytypeisgroupedinMajors(ExxonMobil,Chevron,BP,RoyalDutchShell,EniSpA,TotaIEnergies,andConocoPhillips),NationalOilCompanies(NOCs)andOther(e.g.Independent,PrivateEquity).Maintenancelevelstoimproveflaringcombustionefficiencieswereapplieds

37、eparatelybycompanytypeassumingthatmorescrutinyfrominvestorsandthepublicisplacedontheMajorsascomparedtoNOCsorOther. FlaringdesignstandardsAPI521andAPI537wereconsideredgaugeflarestacksizes,assumingbest-casedesignandoptimalflareparametersduringearlyproductiontime(API,2014;API,2017). Theimpactofwindspee

38、dwasincorporatedusingNASA,sPredictionofWorldwideEnergyResources(POWER)MeteorologyDataAccessViewer(NASA,2021).Onshorewindspeedswereassessedat10mandoffshorewindspeedsat50mtoreflectclosestheightofflarestacksinactualfacilitydesign.Windspeedvariabilityanditsimpactoncombustionefficiencywasincorporatedcorr

39、espondingtothelocationofproduction. TheWorldBanksWorldwideGovernanceIndicatorsdatabase(2023)wasusedasthebasistoassessthegeneralstrengthofregulatoryoversight.Adjustmentsaremadetoconsiderdataonsatellite-detectedlargeemittersandspecificpolicyeffortstocontrolmethaneemissionsfromtheoilandgassectors,astra

40、ckedintheIEAPoliciesDatabase.Countrieswithstrongerflaringregulationandstrongregulatoryoversightarecalibratedassumingcompaniesweremandatedtoquicklyinspectandrepairanymalfunctioningorpoorperformingflaresites.Countrieswithweakflaringregulationandlowlevelsofoversightareassumedtoperformlittletonoaddition

41、almaintenance.CoalminemethaneTheIEA,sestimatesofcoalminemethane(CMM)emissionsarederivedfrommine-specificorregion-specificemissionsintensitiesforAustralia,thePeople,sRepublicofChina(hereafter,China,)jIndiaandtheUnitedStates(whichcollectivelyaccountedforaround75%ofglobalcoalproductionin2022).Emissioni

42、ntensitiesforcoalminesintheUnitedStatesarebasedonthelatestUSEnvironmentalProtectionAgency,sGreenhOUSeGaSReDoningPrOgramandUSGreenhOUSeGaSInventory.EmissionintensitiesforcoalproductioninAustraliaarebasedonitslatestNationaIlnVentoryReports.ThisissupplementedbydatasourcesthatprovideddisaggregatedCMMdat

43、aforChina(Wangetal.,2018;Zhlletal.,2017)andIndia(SinahA.K.andSahUJ.N.,2018)(IndiaMinistryofCoal,2018).Themine-levelCMMestimatesgeneratedinthiswayareaggregated,verifiedandcalibratedagainstcountry-levelestimatestakenfromsatellitesandatmosphericreadings(e.g.Sheneta1.2023:Dencletal.,2022;MilIeretal,2019

44、).MethaneemissionsarecalculatedseparatelyforthethreemaincoaltypesintheGIObalEnerqyandClimateMOde1.steamcoal;cokingcoal;andlignite(seeTable3forasummaryofintensities).Methaneemissionsfrompeatminingarelikelytoberelativelysmallandarenotincludedinthisanalysis.Basedonthesedata,coalquality,minedepth,andreg

45、ulatoryoversightareusedtoestimateCMMemissionintensitiesforminesinothercountriesforwhichtherearenoreliablemeasurement-basedestimates.TheWorldBank,sWorldwideGovernanceIndicatorsdatabase(2023)wasusedasthebasistoassessthegeneralstrengthofregulatoryoversightalongsidepoliciesrelatedtocoalminemethanetracke

46、dintheIEA,sPoliCieSDatabase.Theemissionsintensitiesalsoconsiderestimatesfromsatellite-detectedlargeemittersandbasin-levelemissionsforcoalproducingregions,basedondataprocessingbyKavrros.Thedepthandtype(surfaceorunderground)ofindividualminesinoperationaroundtheworld,aswellastheassociatedcoalresource(t

47、hermalormetallurgical)andmethanegascontent,isbasedontheGEMGlobalCoalMineTraCkerandtheCRUdatabase.Deepercoalseamstendtocontainmoremethanethanshallowerseams,whilecoalofhigherrank(e.g.anthracite)hashighermethanecontentthancoaloflowerrank(e.g.lignite).Intheabsenceofanymitigationmeasures,methaneemissionstotheatmospherewillthereforetendtobehigherforundergroundminesthanforsurfacemines.Minesthathavebothsurfaceandundergroundoperationsareclassifiedasunderground.Min

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号