Capgemini-技术愿景2024-推动未来.docx

上传人:夺命阿水 文档编号:1406914 上传时间:2024-06-15 格式:DOCX 页数:41 大小:977.45KB
返回 下载 相关 举报
Capgemini-技术愿景2024-推动未来.docx_第1页
第1页 / 共41页
Capgemini-技术愿景2024-推动未来.docx_第2页
第2页 / 共41页
Capgemini-技术愿景2024-推动未来.docx_第3页
第3页 / 共41页
Capgemini-技术愿景2024-推动未来.docx_第4页
第4页 / 共41页
Capgemini-技术愿景2024-推动未来.docx_第5页
第5页 / 共41页
点击查看更多>>
资源描述

《Capgemini-技术愿景2024-推动未来.docx》由会员分享,可在线阅读,更多相关《Capgemini-技术愿景2024-推动未来.docx(41页珍藏版)》请在课桌文档上搜索。

1、EXECUTIVECOMPANIONTECHNOVISION2024/PromptthefutureTAB1.ECONTENTSOFINTRODUCTION05WHICHTECHNO1.OGY(MEGA)TRENDSWI1.1.SEEINF1.ECTIONPOINTSIN2024?QGenerativeArtificialIntelligence-SmallWillBetheNewBig07QuantumTechnology-WhenCyberMeetsQuantum08Semiconductors-Moorezs1.awIsntDead,ButItIsChanging10Batteries-

2、ThePowerofNewChemistry11SpaceTech-AddressingtheEarthsChallengesfromOuterSpace13Beyond2024-OtherTechnologiesShapingtheNext5Years15TECHNOVISION2024SUMMARIZED1622TECHNOVISION2024:WHASNEW?19FURTHERRESEARCH/PromptWhatwillsmarttechnologyinthefuturelooklike?MichielboreelPASCA1.BRIERExecutiveVicePresidentan

3、dGlobalChiefTechnologyOfficeratSogetizpartofCapgeminiGroupChiefInnovationOfficerandmemberoftheGlobalExecutiveCommitteeGenerativeyWhencybermeetsQuantumQuantumTSemiconduerofnewchemistryBatteriesSpaceTechWHICHTECHNO1.OGY(MEGA)TRENDSWI1.1.SEEINF1.ECTIONPOINTSIN2024?Whenitcomestoshapingthefuture,alltechn

4、ologytrendsmightholdequalsignificance,asforecastingisoftenachallenging,ifnotanimpossibletask.However,certaintrendsemergeasmoreprominentduetotheiranticipatedsubstantialimpactandtheexpectationofsignificantbreakthroughsinthenearfuture.Wehavepinpointedfivesuchprominenttechnologymegatrendsthatshouldhavei

5、n刊ectionpointsin2024:IIntelligence-Smallwillbethenewbigoorezs1.awisntdead,butitischangingsingtheearthschallengesfromouterspace6TechnoVision2024:ExecutiveCompanionWhyitmatters:ThedevelopmentsinGenerativeAlareindicatinganevolutiontowardsamoreaccessible,versatile,andcost-effectivetechnology.Theinnovati

6、onsmentionedbeforewillenableorganizationstoscaletheirGenerativeAlusecasesfasterwhilealsoderivingmorelong-termvaluefromthetechnology.isstillmanyyearsaway.Nonetheless,2024willseevariousclaimsofanarrowquantumadvantageinspecializedtaskswithinlargerconventionalcomputationalWOrk刊。ws.Boostedbyearlysuccesse

7、s,broaderquantumadvantageswillappearinthecomingyears.Drivenbytheprospectofquantumadvantageinthenearfuture,companies,startups,andQUANTUMTECHNO1.OGY-WHENCYBERMEETSQUANTUMEntering2024,quantumcomputinghasdefinitivelylefttheeraoftheoreticalexplorationandenteredazUtiIity-ScaIezquantumcomputationage.Asdefi

8、nedbyIBM,/utility-scale7quantumcomputersprovidecomputingcapabilitiesbeyondthereachofclassicalcomputationsandopenadoortoaquantumadvantageinreal-worldcommercialquantumapplications.Assignificantchallengesinqubitqualityremain,alarge-scale,broadquantumadvantageAdditionally,asquantumcomputersaresupposedto

9、breakcommonlyusedpublic-keycryptosystems(suchasRSAandECC)oneday,alarge-scalemigrationtoquantum-safetechnologyisabouttostart.Drivenbytechnologicalimprovementsandregulatorypressure,2024promisestobeapivotalyearforquantumsafesolutions.Alreadyin2017,theNationalInstituteofStandardsandTechnology(NIST)initi

10、atedapublicprocesstoselectquantum-resistantpublic-keycryptographicalgorithmsforstandardization.Theyrealizedthatpublic-keyinfrastructuresarecrucialtodigitaltrust,protectingeverythingfromwebconnectionsandemailtodigitallysigneddocumentsandcode.Thealgorithmsforasymmetriccryptographyinplacetodayrelyonmat

11、hematicallychallengingproblems,suchasfactoringverylargenumbers,whicharecomputationallydifficultforcurrentcomputers.Traditionalcomputerswouldtakeyearstobreakthesealgorithms.AsufficientlypowerfulquantumcomputerCondensedMatterPhysics:Understandingthebehaviorofcomplexmaterialsataquantumlevelcanrevolutio

12、nizematerialscienceandengineering.QuantumChemistry:SolvingtheSchrddingerequationforlargermolecules,whichclassicalcomputersstrugglewith,canleadtodrugdiscoveryandmaterialsbreakthroughs.ComputationalFluidDynamics:Addressingthechallengesinsimulatingfluidflow,essentialforaerodynamicsandclimatemodelling.P

13、artialDifferentialEquations:Theseequationsarefundamentalinexpressingphysicalphenomenaandsolvingthemmoreefficientlywillprovidevalueinfieldslikefinanceandengineering.1.ogisticsandOperationsResearch:Optimizingsupplychainsandlogisticscanbenefitfromquantumcomputingbyfindingsolutionstocomplexoptimizationp

14、roblemsmorequickly.SamplingandMonteCarloMethods:Usedinstatisticalphysicsandfinance,thesemethodscanbequadraticallyfasteronaquantumcomputer,providingmoreaccuratemodelsandforecasts.couldsolvethesehardmathproblemsinamatterofminutesbyleveragingitsabilitytoprocessmultiplesimultaneousstates.NISTzsgoalistoe

15、stablishanewstandardbasedonevenhardermathproblems(e.g.latticecryptography)thataredifficultforbothtraditionalandquantumcomputers.Tobeclear,quantum-safealgorithmsdonotrequireaquantumcomputerthemselves;theyprotectagainstanattackleveragingaquantumcomputerwhentheybecomepowerfulenough.Inlate2022ztheUSGove

16、rnmentenactedtheQuantumComputingCybersecurityPreparednessAct/whichpromisestocatalyzeaseismicshiftacrossindustries.ThisgroundbreakinglawmandatesthatallprivateentitiesconductingbusinesswiththeUSgovernmentmustmigratetoPQCwithinayearaftertheNISTstandardsarefinallyreleased.ThisshouldaffectPQCstandardsglo

17、bally.Thereleaseofthefinalstandard,combinedwiththenewregulationshouldintensifytherushtowardsaquantumsafefuturein2024.Organizationseverywhereneedtotakeimmediatestepstowardupdatingtheircryptographicsystemsandsoftwaretothenewquantumsafealgorithmsbecauseaveragemigrationwilltakesignificanttime.Althoughqu

18、antumcomputerscapableofbreakingtodaysencryptiondonotexistyet,theriskofbadactorscollectingencrypteddatatodaywiththeintentionofdecryptingitlater(harvestnowdecryptlater),isveryreal.Astherushforquantumpreparednessintensifies,startingaroundmid-2024,industriesrangingfromfinancetohealthcarewilllikelyinvest

19、heavilyinupgradingtheircybersecurityinfrastructures.Whyitmatters:ThisemergingshifttoPostQuantumCryptographypromisestoupendtheverybasisofcybersecuritystandardsglobally.Allbusinessleadersandtechnologyexpertswillbeaffectedbythisapproachingmilestone,whilemoreandmoreorganizationsbegintheirquantumtransiti

20、on.Things/projectstowatchfor:Althoughenterprisescalequantumcomputingisprobablystillmanyyearsaway,promisingprogressisbeingmadeinseveralareas.GoogleandIBMbelievecommercialquantumsystems,applyingerrormitigationtechniques,areonlyafewyearsaway.Bothtechgiantshavealsoreleasedpublicroadmapsreachingonemillio

21、nqubits,by2029forGoogleand2030forIBM.Inthemeantime,hybridclassicalandnoisyquantumcomputing(NISQ-NoisyIntermediate-ScaleQuantum)willdeliverthefirstpracticaluseinspecificproblemareas,whilewewaitforlarge-scalefault-tolerantquantumcomputerstobeavailable.SEMICONDUCTORS-MOORE,S1.AWISNTDEAD,BUTITIschanging

22、Thesemiconductorindustrystandsonthebrinkofarevolutionaryshiftin2024zinfluencedbyvariousfactorsthatarecollectivelytransformingitsdynamics.Throughout2023,therehasbeenanintensediscussionamongexpertsaboutthefutureofMoores1.aw,whichpositsthatthenumberoftransistorsonanintegratedcircuitdoublesapproximately

23、everytwoyearsztherebyenhancingthecomputingpowerofamicrochip.Aschiptechnologyapproachesthe2-nanometer(0,0000001cm)scale,withthecostsofmanufacturingexpandingatanexponentialrate,questionsariseaboutthefeasibilityofcontinuingthistrendzespeciallyconsideringtheimpendingphysicalconstraintsatthe1-nanometersc

24、ale.However,2024ispoisedtodemonstratethatMoores1.awisnotobsoletebutratherundergoingametamorphosis.Werelikelytowitnessshiftsinapproach,suchastheadoptionofverticalstackinginmulti-layerstructures,explorationofnon-siliconmaterials,andnewlithographytechniques.Inessence,wecanlabelthistechnologicalshiftasg

25、oingformorethanMoorei.e.zaimingtosustainthegrowthincomputingpower,evenastraditionalmethodsofchipminiaturizationapproachtheirphysicallimits.Simultaneously,thesemiconductorecosystemissettoundergoreconfiguration.Thiswillencompasstheestablishmentofnewgigafactories,theadaptationtolocalregulations,theexpa

26、nsionoffabricationcapacities,theintroductionofnovelbusinessmodels,andenhancedfoundryservices.Semiconductorcompaniesareexpectedtointensifytheirfocusoncateringtoindustry-specificdemandsbyproducingchipsthatsignificantlyenhancecustomerexperiences,markinganewerainsemiconductortechnology.Whyitmatters:Anac

27、celerateddigitaltransformationisexpectedacrossindustries,enabledbymorepowerfulconnectedobjects,fromsmartphonestoelectricvehiclestodatacentersandtelecoms.Thesetechnologicalbreakthroughswillbereflectedinshiftsintheecosystemofsemiconductorsitself,withnewgigafactorieszregulations,businessmodels,andfound

28、ryservicesemergingin2024.OthersuseAltooptimizethepowerThings/projectstowatchfor:Crammingmorecomponentsontointegratedcircuitswillcometoanendbecauseweareapproachingtheboundariesofphysics.Despitethisinsurmountableasymptoticpeakofphysics,chipdesignisnowcontemplatinga1.xnanometerscale.However,energyandhe

29、atchallengesposesignificantchallenges.Inaddition,thecostoffabricationofsuchchipsgrowsaggressively.OneapproachtoimprovingperformanceandlowerenergyuseistoaddAlintothechip(IBMZSystems)toreducethemovementofdatatothecomputeandbackandhaveitavailableintheprocessorchipanditscaches.consumptionleveragingperio

30、dsoflesseractivitywherenoteverycomputeresourceisbeingusedtoitsfullest.AnotherwaytoleverageAlistoassistthesoftwareengineerunderstandthetradeoffbetweentheperformanceofthesystemandnumbers.Iftheytheycanreducespecificallyfortheprecisionoftheneedmorebandwidth,theprecision,trainingreducedprecision,effectiv

31、elyexchangingahardwareproblemforasoftwareproblem.Otherapproachesincludeaddingmorenodesorusingheterogeneousarchitectureslikehandingofftaskstospecializedco-processorslikeGPUs,TPUszandXPUsexemplifiedbyNvidia,sHopper+Gracesolution,IntelsSaphireRapidszandFalconShoreplatforms.Batteries-Thepowerofchemistry

32、Improvingtheperformanceandreducingthecostsofbatteriesisamajorfocusforbothbusinessesandgovernments,astheindustrialstakesarehighforeachnation.Theaimistosupportelectricmobilityandacceleratelong-durationenergystorage,whichiscriticaltospeeduptheenergytransitiontorenewablesandtheaccelerationofsmartgrids.T

33、herearefivekeyperformancecharacteristicsofbatterytechnologyevolution:EnergyDensity:Energydensityinbatteriesismeasuredintwoways:volumetric(Wh/1.)andgravimetric(Whkg)zindicatingtheenergystoredperunitvolumeormass.Thisiscrucialforelectricvehicles(EV)andstationaryenergystorage,wherebatterysizeandweightma

34、tter.PowerDensity:Powerdensityreferstotheenergyabatterycanreleaseineachcapacity,withspecificpowerdenotingenergyperunitmass.Thechargingrate(C-rate)describesthepowerneededtochargeabattery,anddischargepowerindicatestheenergyoutputatanymoment.1.ifespan:Thelifespanofabatterydecreaseswitheachcharge-discha

35、rgecycle,affectingitslongevityandsuitabilityforitsoriginalpurpose.Eventually,batteriesshouldberepurposedorrecycled.Costs:Costisasignificantfactor,oftencalculatedperkWh.ForEVszachievingcostparitywithinternalcombustionenginevehiclesiskey,asthebatterypackisthemostexpensivecomponent.Safety:Safetyconcern

36、sariseduetotheflammableliquidelectrolyteandthermalenergyreleasefromthecathodematerialafterseveralcycles.ThesesafetyissuescouldhinderthebroaderadoptionofEVsandbattery-basedenergystoragesolutions.While1.FP(lithiumferro-phosphate)andNMC(nickelmanganesecobalt)arebecomingstandardforelectricvehicleapplica

37、tions,severaltechnologiesconcerningthechemistryofbatteriesarebeingexplored,suchascobalt-free(sodium-ion)andsolid-statebatteries,withalikelyaccelerationin2024.Theprimarydriverforthemarketofsodium-ionbatteriesistheincreaseddemandforenergystoragegeneratedthroughsolarandwind.Marketleadersinthisindustrya

38、reFaradion1.imited(UK),NGKInsulators1.td(Japan),Tiamat(France),HiNaBatteryTechnologyCo.1.td(China),andContemporaryAmperexTechnologyCo.1.imited(China).Thedevelopmentofsolid-statebatteriesrepresentsamajorshiftinbatterytechnology,primarilyforelectricvehicles,astheyhavehigherenergydensities(i.e.storagec

39、apacity),forapricewhichwillbecomelowerthantraditionalbatteries.Theyalsoreducedependencyonmaterialssuchaslithium,nickel,cobalt,rare-earthminerals,andgraphite,whilepromisinglongerlifespansandmorerobustsafety.QuantumScape(USA)zToyota(Japan),SolidPower(USA),Samsung(South-Korea),and1.GChem(South-Korea)ar

40、eamongtheleadersinthisrapidlyevolvingfield.Whyitmatters:Inabusinessworlddrivenbytheenergytransition,thefightagainstclimatechange,andorganizationsintransitiontoasustainableeconomy,theseemergingdevelopmentsmayofferapathwaytowardsbettertradeoffsforthebatteryindustryandmoresustainableuseofmaterials.Thin

41、gs/projectstowatchfor:Whenlookingatthistechnologymegatrend,twocategoriesofplayersneedtobedistinguished:theunicornsandthestartups.Amongsttheunicorns,well-establishedcompaniescanberecognizedsuchasTesla(USA)zacceleratingthetransitiontoEVsandenergystorage,Northvolt(Sweden),manufacturing1.i-ionforEVs,Ver

42、kor(France),manufacturinglow-carbonbatteriesforEVszQuantumScape(USA),developssolid-statebatterytechnologytoincreasetherangeofEVs,Freyr(Norway),manufacturingsemisolid1.i-ionbatteriesforenergystorageandEVszSila(USA),providerofnano-compositesiliconanodethatpowersbreakthroughenergydensityinEVbatteries,a

43、ndSESAl(USA)7manufacturingofscalable,dense,smartandlight1.i-Metalbatteriesforelectrictransportationonlandandinair.Sincebatterytechnologyexhibitsgenuinequantummechanicalandquantumchemicalbehavior,itisaverynaturalareatoapplyquantumcomputing.Severalgovernment-fundedandpromisingprojectsareongoing,andala

44、rgeamountofstartupactivitycanbewitnessede.g.IonQ(USA),psiQuantum(USA),Phasecraft(UK).SPACETECH-ADDRESSINGTHEEARTHzSCHA1.1.ENGESFROMOUTERSPACEIn2024,humanitywillbepreparingtoreturntothemoon.TheNASAArtemisIlMission,scheduledforaNovember2024launch,willsendastronautsintolunarorbitforthefirsttimesincethe

45、1972Apollo17mission.ThislandmarkeventisasymbolofabroaderindustrytrendthatcanbedescribedasanewSpaceAge.ThisrenewedinterestinspacetechnologiesisInthefieldofspacecommunicationsandnetworks,wecanseeasurgeofexcitingprojectssuchasthedevelopmentoflasercommunicationsystems,hybridgroundandspacenetworks,oreven

46、seamless5Gconnectivityfromspace.InEarthObservation,wecanlookforwardtofascinatingprojectstoadvanceourunderstandingoftheplanetanditschangingenvironment.Inparticular,theincreasingintegrationofAlinEarthObservationisofferingmoreefficientdataprocessing,enhancedanalyticalCapabilitieszandthepotentialfornewi

47、nsightsintoEarthsenvironmentalandclimate-relatedchallenges.drivenbytwomajorshiftsintheindustry.Firstly,andcontrarytotheSpaceRaceofthe60sand70s,itisdrivennotjustbygovernmentagencies,butalsobyamultitudeofprivateactorszfromstartupstoSimultaneously,theInternetofThingsisexpandingintoanentirelynewdimensio

48、nwiththedevelopmentofsatelliteconstellations.CubeSats,ChipSats,andothernanosatellitesarebeinglaunchedintheirthousands,eachonboardingitsownarrayofminiaturesensorsandcommunicationsequipment.Anexponentiallycorporations.Secondly,asidefromthemajorgrowingvolumeofdataisbeingcollectedandsharedforscientificmissionsheadedtotheMoonOraVarietyMarszthisraceismdstlyheadedfor1.owEarthOrbit(1.EO)zinthepursuitofcheaperusecasesandmoreperformance.Allinallzthe

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号