matlab遗传算法实例 .docx

上传人:夺命阿水 文档编号:1416339 上传时间:2024-06-15 格式:DOCX 页数:10 大小:21.32KB
返回 下载 相关 举报
matlab遗传算法实例 .docx_第1页
第1页 / 共10页
matlab遗传算法实例 .docx_第2页
第2页 / 共10页
matlab遗传算法实例 .docx_第3页
第3页 / 共10页
matlab遗传算法实例 .docx_第4页
第4页 / 共10页
matlab遗传算法实例 .docx_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《matlab遗传算法实例 .docx》由会员分享,可在线阅读,更多相关《matlab遗传算法实例 .docx(10页珍藏版)》请在课桌文档上搜索。

1、matlab遗传算法实例%卜.面举例说明遗传算法%求下列函数的最大值%f(x)=10*sin(5x)+7*cos(4x)x0,10%将X的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)(210-1)0.01o%将变量域0,10离散化为二值域0,1023,x=0+10*b1023,其中b是0,1023中的一个二值数。%编程%2.1初始化(编码)%initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,Chromlength表示染色体的长度(二值数的长度),%长度大小取决于变量的二进制编码的长度(在本例中取10位)。%遗传算法子程序%

2、Name:initpop.m%初始化functionpop=initpop(popsize,Chromlength)pop=round(rand(popsize,Chromlength);%rand随机产生每个单元为0,1行数为popsize,列数为Chromlength的矩阵,%roud时矩阵的每个单元进行圆整。这样产生的初始种群。%2.2计算目标函数值%2.2.1将二进制数转化为卜进制数(1)%遗传算法子程序%Name:decodebinary,m%产生2n2(-1).1的行向量,然后求和,将二进制转化为十进制functionpop2=decodebinary(pop)p,py=size(

3、pop);%求POP行和列数fori=1:pypop1(:,i)=2.A(py-i).*pop(:,i);endpop2=sum(pop1,2);%求PoPl的每行之和%2.2.2将二进制编码转化为卜进制数(2)%decodechrom.m函数的功能是将奥色体(或二进制编码)转换为卜进制,参数spoint表示待解码的二进制串的起始位置%(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),%参数Iength表示所截取的长度(本例为10)。%遗传算法子程序%Name:decodechrom.m%将二进制编码转换成卜进制funct

4、ionpop2=decodechrom(pop,spoint,length)pop1=pop(:,spoint:spoint+length-1);pop2=decodebinary(pop1);%2.2.3计算目标函数值%calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。%遗传算法子程序%Name:calobjvalue.m%实现目标函数的计算functionobjvalue=calobjvalue(pop)tempi=decodechrom(pop,1,10);%将PoP每行转化成卜进制数x=temp1*10/1023;%将二值域中

5、的数转化为变量域的数objvalue=10*sin(5*x)+7*cos(4*x);%计算I-I标函数值%2.3计算个体的适应值%遗传算法子程序%Name:calfitvalue.m%计算个体的适应值functionIitvalue=CalfitvaIue(ObjvaIue)globalCmin;Cmin=O;p,py=size(objvalue);fori=1:pxifobjvalue(i)+Cmin0temp=Cmin+objvalue(i);elsetemp=0.0;endfitvalue(i)=temp;endfitvalue=fitvalue,;%2.4选择第制%选择或复制操作是决定

6、哪些个体可以进入卜.一代。程序中采用赌轮盘选择法选择,这种方法较易实现。%根据方程pi=fi0i=fifsum,选择步骤:%1)在第t代,由(1)式计算fsum和Pi%2)产生0,1的随机数rand(.),求s=rand(.)*fsum%3)求fis中最小的k,则第k个个体被选中%4)进行N次2)、3)操作,得到N个个体,成为第t=t+1代种群%遗传算法子程序%Name:selection.m%选择复制functionnewpop=selection(pop1fitvalue)totalfit=sum(fitvalue);%求适应值之和fitvalue=fitvaluetotalfit;%单个

7、个体被选择的概率fitvalue=cumsum(fitvalue);%0fitvalue=1234,则cumsum(fitvalue)=13610p,py=size(pop);ms=sort(rand(px,1);%从小到大排列fitin=1;newin=1;whilenewin=pxif(ms(newin)fitvalue(fitin)newpop(newin)=pop(fitin);newin=newin+1;elsefitin=fitin+1;endend%2.5交叉%交叉(CrOSSoVer),群体中的每个个体之间都以一定的概率PC交叉,即两个个体从各自字符串的某一位置%(一般是随机确

8、定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:%x1=0100110%x2=1010001%从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:%y1=0100001%y2=1010110%这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。%事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。%遗传算法子程序%Name:crossover,m%交叉functionnewpop=crossover(pop1pc)px,py=size(pop);newpop=on

9、es(size(pop);fori=1:2:px-1if(randpc)cpoint=round(rand*py);newpop(i)=pop(i,1xpoint),pop(i+11cpoint+1:py);newpop(i+1,:)=pop(i+1,1xpoint),pop(i,cpoint+1:py);elsenewpop(i,:)=pop(i);newpop(i+1,:)=pop(i+1);endend%2.6变异%变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率pm翻转,即由T变为“0”,%或由0变为“1”。遗传算法的变异特性可以

10、使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。%遗传算法子程序%Name:mutation.m%变异functionnewpop=mutation(pop,pm)p,py=size(pop);newpop=ones(size(pop);fori=1:pxif(randpm)mpoint=round(rand*py);ifmpointbestfitbestindividual=pop(i,:);bestfit=fitvalue(i);endend%2.8主程序%遗传算法主程序%Name:genmainO5.mclearclfpopsize=20;%群体大小Chr

11、OmIength=I0;%字符串长度(个体长度)pc=0.6;%交叉概率Pm=O.001;%变异概率pop=initpop(popsize,Chromlength);%随机产生初始群体fori=1:20%20为迭代次数Objvaluej=CalobjvaIue(POp);%计算目标函数fitvalue=calfitvalue(objvalue);%计算群体中每个个体的适应度newpop=selection(pop,Iitvalue);%复制newpop=crossover(pop,pc);%交叉newpop=mutation(pop,pc);%变异bestindividual,bestfit=

12、best(pop,fitvalue);%求出群体中适应值最大的个体及其适应值y(i)=max(bestfit);n(i)=hpop5=bestindividual;x(i)=decodechrom(pop5,1,chromlength)*101023;pop=newpop;endfplot(,10*sin(5)+7*cos(4*x),010)holdonplot(x,y,r*)holdoffzindex=max(y);%计算最大值及其位置x5=x(index)%计算最大值对应的X值y=z【问题】求f(x)=x10*sin(5x)7*cos(4x)的最大值,其中0=x=9【分析】选择二进制编码,

13、种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function(sol,eval=fitness(sol,options)x=sol(1);eval=x10*sin(5*)7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,09MtneSS);%生成初始种群,大小为10xendPop,bPop,trace=ga(09,fitness,initPop,1e-611,maxGenTerm,25,normGeomSelect,.0.08,CarithXover,2

14、,nonnifMutation,2253)%25次遗传迭代运算借过为:X=7.856224.8553(当X为7.8562时,f(X)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。遗传算法实例2【问题】在一5=Xi=5,i=1,2区间内,求解f(1,2)=-20*exp(-0.2*sqrt(0.5*(1.2x22)-exp(0.5*(s(2*pi*x1)cos(2*pi*x2)22.71282的最小值。【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3【程序清单】%源函数的matlab代码functioneval=f(sol)numv=size(sol

15、,2);x=sol(1:numv);eval=-20*exp(-0.2*sqrt(sum(x.A2)/numv)-exp(sum(cos(2*pi*x)/numv)22.71282;%适应度函数的matlab代码functionsol,eval=fitness(sol,options)numv=size(sol,2)-1;x=sol(1:numv);eval=f(x);eval=-eval;%遗传算法的matlab代码bounds=ones(2,1)*-55;p,endPop1bestSols,trace=ga(bounds,fitness)注:前两个文件存储为m文件并放在工作目录3运行结果为

16、P=0.0000-0.00000.0055大家可以直接绘出f(x)的图形来大概看看f(X)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:fplot(,x10*sin(5*x)7*s(4*),0,9)evalops是传递给适应度函数的参数,OPtS是二进制编码的精度,termops是选择maGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。XOVeroPS是传递给交叉函数的参数。mutops是传递给变异函数的参数。【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0=x=9【分析】选择二进制编码,种群中的个体数目为10,二进制

17、编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function(sol,eval=fitness(sol,options)x=sol(1);eval=x+10*sin(5*x)+7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,09MtneSS);%生成初始种群,大小为10xendPop,bPop,trace=ga(09,fitness,initPop,1e-611,maxGenTerm,25,normGeomSelect,.0.08,CarithXover,2,nonnifMutat

18、ion,2253)%25次遗传迭代运算借过为:X=7.856224.8553(当X为7.8562时,f(X)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。遗传算法实例2【问题】在一5=Xi=5,i=1,2区间内,求解f(1,2)=-20*exp(-0.2*sqrt(0.5*(1.A2+x2.A2)-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)+22.71282的最小值。【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3【程序清单】%源函数的matlab代码functioneval=f(sol)numv=size(sol,2);

19、x=sol(1:numv);eval=-20*exp(-0.2*sqrt(sum(x.A2)/numv)-exp(sum(cos(2*pi*x)/numv)+22.71282;%适应度函数的matlab代码functionsol,eval=fitness(sol,options)numv=size(sol,2)-1;x=sol(1:numv);eval=f(x);eval=-eval;%遗传算法的matlab代码bounds=ones(2,1)*-55;p,endPop1bestSols,trace=ga(bounds,fitness)注:前两个文件存储为m文件并放在工作目录3运行结果为P=0

20、.0000-0.00000.0055大家可以直接绘出f(x)的图形来大概看看f(X)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:fplot(x+10*sin(5*x)+7*cos(4*x),019)evalops是传递给适应度函数的参数,OPtS是二进制编码的精度,termops是选择maGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。XOVeroPS是传递给交叉函数的参数。mutops是传递给变异函数的参数。matlab遗传算法工具箱函数及实例讲解核心函数:(l)functionpop=initializega(num,bounds,eevalF

21、N,eevalOps,options)-初始种群的生成函数【输出参数】POP一生成的初始种群【输入参数】num-种群中的个体数目bounds一代表变量的上下界的矩阵eevalFN-适应度函数eevalps一传递给适应度函数的参数OPtiOnS-选择编码形式(浮点编码或是二进制编码)precisionF_or_B,如PredSion-变量进行二进制编码时指定的精度F_or_B-为1时选择浮点编码,否则为二进制编码,由precision指定精度)(2)functionzendPoprbPopztraceInfo=ga(boundszevalFNzevalOpsrstartPop,optsz.ter

22、mFNztermOpszselectFNzselectOpszOverFNs,xOverOps,mutFNszmutOps)-i法函数【输出参数】X-求得的最优解endPop最终得至U的种群bPop-最优种群的一个搜索轨迹【输入参数】bounds-代表变量上卜界的矩阵evalFN-适应度函数evalps一传递给适应度函数的参数StartPop-初始种群optsepsilonprob_opsdisplay-opts(1.2)等同于Eitializega的options参数,第三个参数控制是否输出,一般为0。如le-610termFN-终止函数的名称,如maxGenTermtermps-传递个终止

23、函数的参数,如100SeIeCtFN-选择函数的名称,如normGeomSelectSeIed:0PS一传递个选择函数的参数,如0.08XoVerFNS-交叉函数名称表,以空格分开,jarithXoverheuristicoversimpleoverXOVerops-传递给交叉函数的参数表,如20;23;20mutFNs-变异函数表,VboundaryMutationmultiNonUnifMutationnonUnifMutationunifMutation,mutps一传递给交叉函数的参数表,如400;61003;41003;400注意】matlab工具箱函数必须放在工作目录下【问题】求f

24、(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0v=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数functionsolzeval=fitness(sol,options)x=sol(l);eval=x+10*sin(5*x)+7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,09,fitness)%生成初始种群,大小为10xendPopzbPopztrace=ga(09,fitness,zzinitPopJl

25、e-61lzmaxGenTerm,25,VnormGeomSeIectVf.0.08zarithover,z2nonUnifMutationz2253)%25次遗传迭代运算借过为:X=7.856224.8553(当X为7.8562时,f(X)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。遗传算法实例2【问题】在一5V=XiV=5,i=l,2区间内,求解.f(xlz2)=20*exp(-0.2*sqrt(0.5*(xl.2+2.2)-exp(0.5*(cos(2*pi*xl)+cos(2*pi*x2)+22.71282的最小值。【分析】种群大小10,最大代数1000,

26、变异率0.1,交叉率0.3【程序清单】%源函数的matlab代码functioneval=f(sol)numv=size(solz2);X=SoI(Imumv);eval=-20*exp(-0.2*sqrt(sum(x.2)numv)-exp(sum(cos(2*pi*x)numv)+22.71282;%适应度函数的matlab代码functionsolzeval=fitness(sol,options)numv=size(solz2)-l;X=SoI(Imumv);eval=f(x);eval=eval;%遗传算法的matlab代码bounds=ones(2,l)*-55;p,endPopzbestSols,trace=ga(boundszfitness)注:前两个文件存储为m文件并放在工作目录下,运行结果为P=0.0000-0.00000.0055大家可以直接绘出f(x)的图形来大概看看f(X)的最值是多少,也可是使用优化函数来验证Cmatlab命令行执行命令:fplot(x+10*sin(5*x)+7*cos(4*x)z0,9)evalops是传递给适应度函数的参数,OPtS是二进制编码的精度,termops是选择maGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。XoVeroPS是传递给交叉函数的参数。mutops是传递给变异函数的参数

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号