Giving Molecules an Identity. On the Interplay Between QSARs and Partial Order Ranking.docx

上传人:夺命阿水 文档编号:1505359 上传时间:2024-06-29 格式:DOCX 页数:11 大小:22.39KB
返回 下载 相关 举报
Giving Molecules an Identity. On the Interplay Between QSARs and Partial Order Ranking.docx_第1页
第1页 / 共11页
Giving Molecules an Identity. On the Interplay Between QSARs and Partial Order Ranking.docx_第2页
第2页 / 共11页
Giving Molecules an Identity. On the Interplay Between QSARs and Partial Order Ranking.docx_第3页
第3页 / 共11页
Giving Molecules an Identity. On the Interplay Between QSARs and Partial Order Ranking.docx_第4页
第4页 / 共11页
Giving Molecules an Identity. On the Interplay Between QSARs and Partial Order Ranking.docx_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《Giving Molecules an Identity. On the Interplay Between QSARs and Partial Order Ranking.docx》由会员分享,可在线阅读,更多相关《Giving Molecules an Identity. On the Interplay Between QSARs and Partial Order Ranking.docx(11页珍藏版)》请在课桌文档上搜索。

1、GivingMoleculesanIdentity.OntheInterplayBetweenQSARsandPartialOrderRankingMolecules2004,9,1010-1018moleculesISSN1420-3049parisonwithexperimentallywe11-characterized,structurallysimilarcompounds.ItisdisclosedthatexperimentallyWeIl-CharaCteriZedcompoundsmayserveassubstitutesforhighlytoxiccompoundsinex

2、perimentalstudieswithoutexhibitingthesameextremetoxicity,whilefromanoverallviewpointtheyexhibitanalogousenvironmentalcharacteristics.Keywords:Noise-deficientQSARs:PartialOrderRanking;HasseDiagrams;Organo-phosphates;Nerveagents.IntroductionThelackofdataforthevastmajorityofexistingchemicalsiswel1known

3、andconstitutesobviouslyasignificantprobleminrelationtoe.g.,riskassessment.Thus,accordingtotheEuropeanCommissiononlyinthecaseofapproximately14%oftheHPV(HighProductionVolume)chemicalsontheEINECSlist,comprising100,116entries,theminimumrequireddataforevaluatingthechemicalswereavai!able.Forapproximately2

4、1%ofthecompoundsnodataatallconcerningtheirpotentialimpactontheenvironmentandhumanhealthwerefound1.InastudybytheDanishEPA2itwasconcludedthateveninmajorsourcesoftestdata,informationonselectedecotoxicologicaleffectscouldonlybefoundforverylimitednumberofthecompoundsontheEINECSlist(acutetoxiceffect:10.5%

5、,reproductivedamage:2.2%,geneticdamage:3.2%,carcinogeniceffect:1.6%,effectontheaquaticenvironment:3.5%).Sinceintensiveandexperimentalevaluationsofchemicalsarcrathercostly3,andreferencestherein,QSRderiveddataforphysico-chemicalaswel1astoxicologicalMolecules2004,91011endpointsappearasanattractivealter

6、native.However,althoughthelackofdatacanberemediedtoacertainextentthroughQSARmodeling,thiswillleaveuswiththepossibilityofcharacterizingthesinglemoleculesbasedonsingleparameters,suchassolubility,octanol-waterpartitioning,vaporpressure,biodegradation-andbioaccumulationpotential.However,toestablishanide

7、ntityforagivenmolecule,e.g.,asapotentialPBTsubstancerequirestakingseveralparametersintoaccountsimultaneously,i.e.,Persistence,BioaccumulationandToxicity.Inthepresentstudytheadvantageoususeofso-callednoise-deficientQSARs,developedusingdatafromexperimentallywe11-characterizedcompoundsasthetrainingset,

8、asapreprocessingtooltoderivethedesiredendpointsforsubstanceswhereexperimentaldataarenotavailable.Subsequently,theseendpointswillbeappliedasdescriptorsinestablishingapartialorderingofcombinedsetsofcompounds,herebygivingtheexperimentallynotinvestigatedcompoundsanidentitybycomparingtostructurallyrelate

9、d,experimentallywel!-characterizedcompounds4,53.MethodsQSARInthepresentstudytheend-pointsaregeneratedthroughQSARmodeling,theEPISuitebeingtheprimarytool6.Togeneratenew1inearnoise-deficientQSARmodels,EPIgeneratedvaluesfor,e.g.,logSol,logK0W,logVPandlogH1.Carefurthertreatedbyestimatingtherelationshipsb

10、etweentheEPIgenerateddataandavai!ableexperimentaldata7fortheaseriesofexperimentallywell-characterizedcompoundsinthetrainingset,thegeneralformulafortheend-points,Di,tobeusedbeingDi=aiDEPI+bi(1)DEPIistheEPIgeneratedend-pointvalueandaiandbibeingconstants.ThelogKOWvaluesgeneratedinthiswayaresubsequently

11、usedtogeneratelogBCFvaluesaccordingtotheConnellformula8logBCF=6.910-3(logKow)1.8510-1(log4K)3+1.55(logKow)2ow4.181ogKow+4.72(2)Themodelwassomewhatmodified.Thus,a1ineardecreaseoflogBCFwithlogKOWwasassumedintherange1logK0W2.33,thelogBCF=0.5forlogKOW1,thelattervaluebeinginaccordancewithBCFWin6.Subseque

12、ntlydatafornotcharacterizedcompoundsarecalculatedbasedontheseformulaeandtheappropriateEPIgenerateddata.Inthepresentstudyatrainingsetconsistingofupto65organophosphorus(OP)insecticidesareapplied.Duetothelackofexperimentaldataforthetrainingsetcompoundswithregardstotheirbiodegradation,theaboveprocedurew

13、asnotapplicabletothebiodegradationpotential,BDP3.Thus,dataonBDP3areusedasestimatedbytheappropriatemodulesintheEPlSuite.Molecules2004,91012PartialOrderRankingThetheoryofpartialorderrankingispresentedelsewhere9anditsapplicationinrelationtoQSRispresentedinpreviouspapers1013.Inbrief,PartialOrderRankingi

14、sasimpleprinciple,whichaprioriincludesastheonlymathematicalrelation.Ifasystemisconsidered,whichcanbedescribedbyaseriesofdescriptorspi,agivencompound,characterizedbythedescriptorspi(八)canbecomparedtoanothercompoundB,characterizedbythedescriptorspi(B),throughcomparisonofthesingledescriptors,respective

15、ly.Thus,compoundwillberankedhigherthancompoundB,i.e.,BA,ifatleastonedescriptorforAishigherthanthecorrespondingdescriptorforBandnodescriptorforislowerthanthecorrespondingdescriptorforB.If,ontheotherhand,pi()pi(B)fordescriptoriandpj()pj(B)fordescriptorj,AandBwillbedenotedincomparable.Inmathematicalter

16、msthiscanbeexpressedasBApi(B)pi(八)foralli(3)Obviously,ifalldescriptorsforAareequaltothecorrespondingdescriptorsforB,i.e.,pi(B)=pi(八)foralli,thetwocompoundswillhaveidenticalrankandwillbeconsideredasequivalent.ItfurtherfollowsthatifABandBCthenAC.IfnorankcanbeestablishedbetweenandBthesecompoundsaredeno

17、tedasincomparable,i.e.theycannotbeassignedamutualorder.Inpartialorderrankingincontrasttostandardmultidimensionalstatisticalanalysis-neitherassumptionsaboutlinearitynoranyassumptionsaboutdistributionpropertiesaremade.Inthiswaythepartialorderrankingcanbeconsideredasanon-parametricmethod.Thus,thereisno

18、preferenceamongthedescriptors.However,duetothesimplemathematicsoutlinedabove,itisobviousthatthemethodaprioriisrathersensitivetonoise,sinceevenminorfluctuationsinthedescriptorvaluesmayleadtonon-comparabi1ityorreversedordering.Thegraphicalrepresentationofthepartialorderingisoftengiveninaso-calledHasse

19、diagram14-17.InpracticethepartialorderrankingsaredoneusingtheWHassesoftware17.1.inearextensionsThenumberofincomparableelementsinthepartialorderingmayobviouslyconstitutea1imitationintheattempttoranke.g.aseriesofchemicalsubstancesbasedontheirpotentialenvironmentalorhumanhealthhazard.Toacertainextentth

20、isproblemcanberemediedthroughtheapplicationoftheso-called1inearextensionsofthepartialorderranking18,19.Ainearextensionisatotalorder,whereallcomparabilitiesofthepartialorderarereproduced9,16.Duetotheincomparisonsinthepartialorderranking,anumberofpossiblelinearextensionscorrespondstoonepartialorder.If

21、allpossiblelinearextensionsarefound,arankingprobabilitycanbecalculated,i.e.,basedonthe1inearextensionstheprohabi1itythatacertaincompoundhaveacertainabsoluterankcanbederived.Ifallpossible1inearextensionsarefounditispossibletocalculatetheaverageranksofthesingleelementsinapartiallyorderedset20,21.Theav

22、eragerankissimplyIhcaverageoftheranksinallthe1inearextensions.Onthisbasisthemostprobablyrankforeachelementcanbeobtainedleadingtothemostprobablylinearrankofthesubstancesstudied.Molecules2004,91013ThegenerationoftheaveragerankofthesinglecompoundsintheHassediagramisobtainedapplyingthesimpleempiricalrel

23、ationrecentlyreportedbyBrggemannetal22.Theaveragerankofaspecificcompound,ci,canbeobtainedbythesimplerelationRkav(ci)=(N+l)-(S(ci)+1)(N+l)/(N+l-U(ci)(4)whereNisthenumberofelementsinthediagram,S(ci)thenumberofsuccessorstociandU(ci)thenumberofelementsbeingincomparabletoci22.ResultsandDiscussionThebasic

24、ideaofusingpartialorderrankingforgivingmoleculesanidentityisillustratedinFigure1.Thus,letusassumethatasuiteof10compoundshastobeevaluatedandthattheevaluationshou1dbebasedonthreepre-selectedcriteria,e.g.,persistence,bioaccumulationandtoxicity.1.ettheresultingHaSSediagrambetheonedepictedinFigure1.Ifwea

25、pplythethreedescriptorsrepresentingrespectively,sothemorepersistent,themorebioaccumulatingandthemoretoxicasubstancewouldbethehigherinthediagramitWOUldbefound,FigureIAdisclosesthatthecompoundsinthetoplevel,i.e.,compounds1,3,4,7and8onacumulativebasiscanbeclassifiedastheenvironmentallymoreproblematicof

26、the10compoundsstudiedwithrespecttotheirPBTcharacteristics,whereascompound10thatafoundinthebottomofthediagramisthelesshazardous.Figure1.IllustrativeHassediagramof:10compoundsusingthreedescriptorsandB:thesame10compoundsplusonenewcompoundX.A12354679810B135467982X10Molecules2004,91014SubsequentlyWecanin

27、troducecompoundssolelycharacterizedbyQSRderiveddatainordertogivethisnewcompound,X,anidentity,e.g.,inanattempttoelucidatetheenvironmentalimpactofX.Adoptingtheabovediscussed10compoundsandthecorrespondingHassediagram(FigureIA)wcthenintroducedthecompoundX.TherevisedHassediagram,nowincluding11compoundsis

28、visualizedinFigureIB.ItisimmediatelydisclosedthatcompoundXhasnowobtainedanidentityincomparisontotheoriginallywe11-characterizedcompounds,asitisevaluatedaslessbiodegradation,bioaccumulationandtoxicity,environmcntalIyharmfulthancompounds4and7,butmoreharmfulthancompound10.Thus,throughthepartialorderran

29、kingthecompound,X,hasobtainedanidentityinthescenariowithregardtoitspotentialenvironmcntalimpact.Toi1lustratetheaboveanexamplefromourcurrentstudyonthephysico-chemicalcharacteristicsofOPcompoundswithspecialemphasisonchemicalwarfarenerveagentsastheG-agents,likeTabun,SarinandSoman,andV-agcnts,likeVX,sha

30、l1beused4,5.InthepresentstudyweshallfocusontheaqueouspersistenceofOPinsecticidesandknowandpotentialnerveagentsasexpressedthroughthesolubility(Sol),thebiodegradationpotential(BDP)andtheHenrys1.awConstants(H1.C),thelatterbeingderivedbasedontheEPIva1uesasgivenbyHenryWin6.AsmentionedtheEPISuite6hasbeent

31、heprimarytoolforQSARmodeling,thesingleEPIgeneratedvaluesforlogSol,logK0W,logVPandlogH1.Cbeingfurthertreatedtogeneratenew1inearnoise-deficientQSARmodels,cf.eqn.14.Asanexamplethenewnoise-deficientQSRmodelforlogH1.CisdepictedinFigure2,thecorrespondingmodelbeingexpressedthrougheqn.54.logH1.C=0.946logH1.

32、CEPI1.168;r2=0.636(5)Figure2.VisualizationoftheEPIbasedmodifiedQSARmodelingoflogH1.Cbasedon49OPinsecticides0-12.000-10.000-8.000-6.000-4.000-2.0000.000-2-4-6-8-10-12logH1.CEPIThenoise-deficientQSARforthesolubi1itywasderivedanalogously,theresultingmodelbeingdescribedthrougheqn.64.logSol=0.983logSol(E

33、PI)+0.625;n=64,r2=0.830(6)Molecules2004,91015Thegeneratedend-pointaresubsequentlyusedtogeneratepartialorderrankingsofthethe65OPinsecticidestogetherwiththe16knownpotentialnerveagentstakingtwoormoredescriptorssimultaneouslyintoaccount.Thus,asintotal81compoundsareincludedinthesubsequentrankingprocedure

34、,theresultingHassediagramsmayseemsomewhatconfusing.Figure3depictstheHassediagramdisclosingthemutualrankingofthecompoundsduetotheiraqueouspersistence,i.e.,bringingsimultaneouslythesolubi1ity(logSol),thebiodegradationpotentialforultimatebiodegradation(BDP3)andHenrys1.awConstant(1ogHI.C)intoplay.Figure

35、3.Hassediagramdisplayingtheaqueouspersistenceofthe65OPinsecticides(whitered)and16nerveagent(yellow/blue),ThenumberscorrespondstothenumberingoftheOPinsecticidesintheFADNAPdatabase7FromtheabovefigureitcanbeseenthatthenerveagentVXislocatedatthesamelevelasthecompounds61(AniIofos),71(Azinphosmethyl),194(

36、Chlorfenvinphos),217(Chlorpyriphosmethyl),296(Dialifos),319(Dicrotophos),372(Ditaiimfos),705(Monocrotophos),795(Phosalone),798(Phosmet),799(Phosphamidon)and869(Pyraclofos),inadditiontotheRussianversionofVX(RVX)andthepotentialnerveagentmMe(Amitonmethyl).Apriorithelocationofthecompoundsonthesameleveli

37、ntheHassediagramsuggeststhesecompoundstobecloseintheiroverallcharacteristicsbasedonthesetofdescriptorsused,i.e.solubi1ity,biodegradationpotentialandHenrys1.awConstant.However,afurtheranalysisappearstobenecessaryinordereventuallytodisclosehowclosethesecompoundsactuallyare.Forthisanalysistheconceptofa

38、veragerank4,5,22,23wasadopted.Thus,itisassumedthatiftheaverageranks,Rkav,oftwocompoundsareclose,thetwocompoundswi11onanaveragebasisdisplaysimilarcharacteristicsasbeingdeterminedbythesetofdescriptorsapplied.InTable1theaverageranksfortheabove-mentionedOPsaregiventogetherwithminimumacuteoraltoxicityand

39、acutepercutaneoustoxicity,respectively,inbothcasesforrats7.Molecules2004,9Table1.Averageranksfortheaqueouspersistenceasdeterminedbythe1016solubility,thebiodegradationpotentialandtheHenrys1.awConstantsforaseriesofOPinsecticidesandVX(thecompoundIDreferstotheFADTNAPdatabase,cf.theabovetext:na:notavai!a

40、ble)AverageRankAcuteOralToxicity(mgkg)472424163051756602013516017.92370.088AcutePercutaneousToxicity(mgkg)2000220313700na11020001121500na37420000.1CompoundRkav20.525.69.618.2419.119.310.335.121.96.218.95.3AnilofosAzinphosmethylChlorfenvinphosChlorpyriphosmethylDiaIifOSDicrotophosDitalimfosMonocrotop

41、hosPhosalonePhosmetPhosphamidonPyraclofosVXItisimmediatelyseenthatalthoughlhecompoundswereplacedonthesamelevelintheHassediagram,onlythroughtheanalysisofaverage1inearrankthetrueidentityofthesinglecompoundsaredisclosed.Thus,inthepresentcaseitisobviousthatVX(Rkav=5.3)thatinthepresentcontextistheunknown

42、compoundachievesanidentitythatcanbecomparedtoPhosphamidon(Rkav=6.2)astheclosestcounterpart.Thus,withregardtoaqueouspersistence,theabovecombinedQSARandpartialorderrankinganalysisindicatesthatVXandPhosphamidonwilldisplayclosetoidenticalbehavior.ThisfurthermeansthatPhosphamidon,withinthepresentsetofcom

43、poundsincludedintheinvestigation,appearsastheoptimalsubstituteforVXinexperimentalstudieswhereaqueouspersistenceisacrucialparameter.11isnotedthattheacuteoraltoxicityassociatedwithPhosphamidonisapproximately200timeslowerthanthatofVXandinthecaseofacutepercutaneoustoxicity,Phosphamidonappearstobenearly4

44、000timeslesstoxicthanVX.ConclusionsThepresentstudyhasdemonstratedhowunknowncompoundsmayobtainanidentitybycomparingtostructurallyrelated,experimentallywe11-characterizedstructurallysimilarcompounds.Theidentitycanbeestablishedbyacloseinterplaybetweenso-callednoise-deficientQSARs,inthepresentstudygener

45、atedusingtheEPISuiteasthemodelingonset.Subsequently,thegeneratedphysico-chemicalend-pointsareusedasdescriptorsinapartialorderbasedrankingandthesubsequentanalysisoftheaverage1inearrank.Itissuggestedthatexperimentallywell-characterizedcompoundsmayserveassubstitutesforhighlytoxiccompounds,suchasthenerv

46、eagentinexperimentalstudieswithoutexhibitingthesameextremetoxicity,howeverfromanoverallviewpointexhibitanalogousenvironmentalcharacteristics.Molecules2004,91017ReferencesandNotes1.EINECS(EuropeanInventoryofExistingComUiercialChemicalSubstances).cf.EuropeanCommission1967:Directive67548EEContheapplica

47、tionoflaws,regulationsandadministrativeprovisionsrelatingtotheclassification,packagingandlabelingofdangeroussubstancesandthe6amendment:Directive79/831/EEC;art.13thNimcla,J.Workingdocumentontheavailabilityofdataforclassificationandlabellingof2.chemicalsubstancesattheEuropeanmarket,19943.Walker,J.D.;C

48、arlsen,1.;Hulzebos,E.;Siinon-Hettich,B.GovernmentpplicationsofAnalogues,SRsandQSRstoPredictAquaticToxicity,ChemicalorPhysicalProperties,EnvironmentalFateParametersandHealthEffectsofOrganicChemicals,SRQSREnviron.Res.2002,13,607-6194.Carlsen,1.QSARApproachtoPhysico-ChemicalDataforOrganophosphateswithS

49、pecialFocusonKnownandPotentialNerveAgents.Submittedforpublication5.Carlsen,1.PartialOrderRankingofOrganophosphateswithSpecialEmphasisonNerveAgents.Commun.Math.Comp.Chern.-MATCH,inpress6.PollutionPrevention(P2)Framework,EP-758-B-00-001:maybeobtainedthroughthelinkiP2Manual6-00.pdffoundatparisonofpartialordertechniquewiththreemethodsofmulti-criteriaanalysisforrankingofchemicalsubstances,J.Chem

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号