人工智能技术课程综述.docx

上传人:夺命阿水 文档编号:49293 上传时间:2022-08-29 格式:DOCX 页数:16 大小:31.11KB
返回 下载 相关 举报
人工智能技术课程综述.docx_第1页
第1页 / 共16页
人工智能技术课程综述.docx_第2页
第2页 / 共16页
人工智能技术课程综述.docx_第3页
第3页 / 共16页
人工智能技术课程综述.docx_第4页
第4页 / 共16页
人工智能技术课程综述.docx_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《人工智能技术课程综述.docx》由会员分享,可在线阅读,更多相关《人工智能技术课程综述.docx(16页珍藏版)》请在课桌文档上搜索。

1、人工智能技术课程综述X人工智能的定义与进展1.1 人工智能的定义40多年来,人工智能获得了很大的进展,己引起了众多学科和不同专业背景学者们的口益重视,成为一门广泛的交叉和前言学科。进十年来,现代计算机的进展己能够存储及其大量的信息,进行快速信息处理,软件功能和硬件实现军取得长足进步,使人工智能获得进一步的应用。人工智能(ArtifiCiallmelIigenCe),英文缩写为AL目前的“人工智能”一词是指用计算机模拟或实现的一种智能。同时人工智能又是一个学科名称,作为一个学科,人工智能争论的如何使机器(计算机)具有智能的科学和技术,特殊是自然智能如何在计算机上实现或再现的科学技术。从科学的角度

2、讲,人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相像的方式作出反应的智能机器,该领域的争论包括机器人、语言识别、图像识别、自然语言处理和专家系统等。“人工智能”一词最初是在1956年DartmoUth学会上提出的。从那以后,争论者们进展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必需懂得计算机学问,心理学和哲学。人工智能是包括非常广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能争论的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的简单工作。但不同的时代、不同的人对这种“

3、简单工作”的理解是不同的。例如繁重的科学和工程计算原来是要人脑来担当的,现在计算机不但能完成这种计算,而且能够比人脑做得更快、更精确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的简单任务”,可见简单工作的定义是随着时代的进展和技术的进步而变化的,人工智能这门科学的详细目标也自然随着时代的变化而进展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来争论人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的进展历史是和计算机科学与技术的进展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、掌握论、自动化、仿生学、生物学、心理学、数

4、理规律、语言学、医学和哲学等多门学科。人工智能学科争论的主要内容包括:学问表示、自动推理和搜寻方法、机器学习和学问猎取、学问处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。1.2 人工智能的争论进展对于人工智能的进展来说,20世纪30年月和40年月的智能界,发觉了两件最重要的事:数理规律和关于计算的新思想。而人工智能的总体进展阶段大致可以分为以下五大阶段:第一阶段:50年月人工智能的兴起和冷落。人工智能概念首次提出后,相继消失了一批显著的成果,如机器定理证明、跳棋程序、通用问题S求解程序、LISP表处理语言等。但由于消解法推理力量的有限,以及机器翻译等的失败,使人工智能走入

5、了低谷。这一阶段的特点是:重视问题求解的方法,忽视学问重要性。其次阶段:60年月末到70年月,专家系统消失,使人工智能争论消失新高潮。DENDRAL化学质谱分析系统、MYClN疾病诊断和治疗系统、PRoSPECTlOR探矿系统、HearSay-H语音理解系统等专家系统的争论和开发,将人工智能引向了有用化。并且,1969年成立了国际人工智能联合会议(IntenlationaIJointConferencesonArtificialIntelligence即IJCAI)。第三阶段:80年月,随着第五代计算机的研制,人工智能得到了很大进展。日本1982年开头了“第五代计算机研制方案“,即“学问信息处

6、理计算机系统KIPS”,其目的是使规律推理达到数值运算那么快。虽然此方案最终失败,但它的开展形成了一股争论人工智能的热潮。第四阶段:80年月末,神经网络飞速进展。1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资渐渐增加,神经网络快速进展起来。第五阶段:90年月,人工智能消失新的争论高潮。由于网络技术特殊是国际互连网的技术进展,人工智能开头由单个智能主体争论转向基于网络环境下的分布式人工智能争论。不仅争论基于同一目标的分布式问题求解,而且争论多个智能主体的多目标问题求解,将人工智能更面对有用。此外,由于HOPfield多层神经网络模型的提出,使人

7、工神经网络争论与应用消失了欣欣向荣的景象。人工智能已深化到社会生活的各个领域。2人工智能的目标和争论策略人工智能作为一门学科,其争论目标就是制造智能机器和智能系统,实现智能化社会。详细来讲,就是要使计算机不仅具有脑智能和群智能,还要具有看、听、说、写等感知和沟通力量。简言之,就是要使计算机具有自主发觉规律、解决问题和创造制造的力量,从而大大扩展和延长人的智能,实现人类社会的全面智能化。人工智能学科的争论策略则是先部分地或某种程度地实现机器的智能,并运用智能技术解决各种实际问题特殊是工程问题,从而使现有的计算机更敏捷、更好用和更有用,成为人类的智能化信息处理工具,从而逐步扩展和不断延长人的智能,

8、逐步实现智能化。3人工智能的争论与应用领域人工智能是在计算机科学、掌握论、信息论、心理学、语言学等多种学科相互渗透的基础进展起来的一门新兴边缘学科,主要争论用用机器(主要是计算机)来仿照和实现人类的智能行为,经过几十年的进展,人工智能应用在不少领域得到进展,在我们的日常生活和学习当中也有很多地方得到应用。通过本次人工智能技术的课程,也使我了解到了其一些相关领域的应用学问,以下就简洁概述关于人工智能的几个应用领域的相关学问。3.1 问题的求解人工智能的第一大成就是进展了能够求解难题的下棋程序。在下棋程序中应用的某些程序,如向前看几步,并把困难的问题分成一些比较简洁的子问题,进展成为搜寻和问题归约

9、这样的人工智能基本技术。今日的计算机程序能够下锦标赛水平的各种方盘棋。十五子棋和国际象棋,并取得前面提到的计算机棋手战胜国际象棋冠军的成就。另一种问题求解程序把各种数学公式符号汇编在一起,其性能达到很高的水平,并正在为很多科学家和工程师所应用。有些程序甚至还能够用阅历来改善其性能。正如前面所述,这个问题中未解决的问题包括人类棋手具有的但尚不能明确表达的力量,如国际象棋大师们洞察棋局的力量。另一个未解决的问题涉及问题的原概念,在人工智能中叫做问题表示的选择。人们经常能够找到某种思索问题的方法从而使求解变得简洁而最终解决问题。到目前为止,人工智能程序已经知道如何考虑要解决的问题,即搜寻解决空间,查

10、找较优的解答。3.2 规律推理早期的规律推理演绎工作与问题和难题的求解相当亲密。已经开发出的程序能够借助于对事实的数据库的操作来“证明”断定;其中每个事实由分立的数据结构来表示,就像数理规律中由分立公式表示一样。与人工智能的其他技术的不同之处是,这些方法能够完整的和全都的加以表示。也就是说,只要原本领实是正确的,那么程序就能够证明这些从事实得出的定理,而且也仅仅是证明这些原理。规律推理是人工智能争论中最长久的子领域之一。特殊重要的是要找到一些方法,只把留意力集中在一个大型的数据库中的有关事实上,留意可信的证明,并在消失新信息的时候适时地修正这些证明。3.3 机器学习机器学习是机器具有智能的重要

11、标志,同时也是机器猎取学问的根本途径。有人认为,一个计算机系统假如不具备学习功能,就不能称其为智能系统。机器学习主要争论如何使计算机能够模拟或实现人类的学习功能。机器学习是一个难度较大的争论领域,它与认知科学、神经心理学、规律学等学科都有着亲密的联系,并对人工智能的其他分支,如专家系统、自然语言理解、自动推理、智能机器人、计算机视觉、计算机听觉等方面,也会起到重要的推动作用。3.4 模式识别模式识别就是通过计算机用数学技术方法来争论模式的自动处理和判读。这里,我们把环境与客体统称为“模式”,随着计算机技术的进展,人类有可能争论简单的信息处理过程。用计算机实现模式(文字、声音、人物、物体等)的自

12、动识别,是开发智能机器的一个最关键的突破口,也为人类熟悉自身智能供应线索。信息处理过程的个重要形式是生命体对环境及客体的识别。对人类来说,特殊重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要方面。市场上可见到的代表性产品有光学字符识别系统(OpticalCharacterRecognition,OCR)语音识别系统等。计算机识别的显著特点是速度快、精确性和效率高。识别过程与人类的学习过程相像。以“汉字识别”为例:首先将汉字图象进行处理,抽取主要表达特征并将其特征与汉字的代码存在计算机中。就象把老师教我们这个字叫什么、如何写的学问记忆在大脑中

13、。这一过程叫做“训练”。识别过程就是将输入的汉字图像经处理后与计算机中所保存的全部汉字进行比较,找出最相近的字作为识别结果,这一过程叫做“匹配”。语音识别就是让计算机能听懂人说的话,一个重要的例子就是七国语言(英、日、意、韩、法、德、中)口语自动翻译系统。其中,中文部分的试验平台设立在中国科学院自动化所的模式识别我国重点试验室,这是口语翻译争论跨入世界领先水平的标志。该系统实现后,人们出国预定旅馆、购买机票、在餐馆对话和兑换外币时,只要采用电话网络和国际互联网,就可用手机、电话等与“老外”通话。指纹是人体的一个重要特征,具有唯一性。北京高校有关专家对数字图像的离散几何性质进行了深化争论,建立了

14、从指纹灰度图像精确计算纹线局部方向、进而提取指纹特征信息的理论与算法,随后争论胜利了适于民用身份鉴定的全自动指纹鉴定系统,以及适于公安刑事侦破的指纹鉴定系统。从而开创了我们我国指纹自动识别系统应用的先河。北大指纹自动识别系统的推出,使我们我国公安干警从指纹查对的繁重人工处理中解放出来。浙江省从1997年开头使用北大指纹自动识别系统,实行省地(市)二级建库、省地(市)县三级查询的方式,形成了独特的“浙江模式”。省公安厅现已建立了IOO多万人的指纹库,是目前国内的其次大库。在100多万人的指纹库中,检索一枚现场指纹仅需4分钟左右。2000年浙江省用指纹自动识别系统直接破案3063起,连带破案120

15、00多起。破案率为全国第一,并遥遥领先于国内其它指纹识别系统,被公安部树为指纹系统建设应用样板。这里介绍一个综合应用的例子,一汽集团公司与国防科技高校最近合作研制胜利“红旗轿车自主驾驶系统”(即无人驾驶系统),它标志着我们我国研制高速智能汽车的力量已达到当今世界先进水平。汽车自主驾驶技术是集模式识别、智能掌握、计算机学和汽车操纵动力学等多门学科于一体的综合性技术,代表着一个我国掌握技术的水平。红旗车自主驾驶系统采纳计算机视觉导航方式,并采纳仿人掌握,实现了对红旗车的操纵掌握。首先,摄像机将车前方的道路和车辆行驶状况输入到图像处理和图像识别系统。该系统识别出道路状况、前方车辆的相对距离和相对车速

16、。接着,路径规划系统依据这些信息规划出一条合适路径,即打算如何开车。然后,路径跟踪系统依据需跟踪的路径,结合车辆行驶状态参数和车辆驾驶动力学约束,形成掌握命令,掌握方向盘和油门开启机构产生相应动作,使汽车依据规划好的路径前进,即按自主驾驶系统的规划路径前进。3.5 自然语言理解自然语言的处理是人工智能技术应用于实际领域的典型范例,经过多年艰苦努力,这一领域已获得了大量令人瞩目的成果。目前该领域的主要课题是:计算机系统如何以主题和对话情境为基础,留意大量的常识世界学问和期望作用,生成和理解自然语言。这是一个极其简单的编码和解码问题。3.6 专家系统专家系统是一种模拟人类专家解决领域问题的计算机程

17、序系统。专家系统内部含有大量的某个领域的专家水平的学问与阅历,能够运用人类专家的学问和解决问题的方法进行推理和推断,模拟人类专家的决策过程,来解决该领域的简单问题。专家系统是人工智能应用争论最活跃和最广泛的应用领域之一,涉及到社会各个方面,各种专家系统已遍布各个专业领域,取得很大的胜利。依据专家系统处理的问题的类型,把专家系统分为解释型、诊断型、调试型、修理型、教育型、猜测型、规划型、设计型和掌握型等10种类型。详细应用就很多了,例如血液凝聚疾病诊断系统、电话电缆维护专家系统、花布图案设计和花布印染专家系统等等。为了实现专家系统,必需要存储有该特地领域中经过事先总结、分析并按某种模式表示的专家

18、学问(组成学问库),以及拥有类似于领域专家解决实际问题的推理机制(构成推理机)。系统能对输入信息进行处理,并运用学问进行推理,做出决策和推断,其解决问题的水平达到或接近专家的水平,因此能起到专家或专家助手的作用。开发专家系统的关键是表示和运用专家学问,即来自领域专家的己被证明对解决有关领域内的典型问题有用的事实和过程。目前,专家系统主要采纳基于规章的学问表示和推理技术。由于领域的学问更多是不精确或不确定的,因此,不确定的学问表示与学问推理是专家系统开发与争论的重要课题。此外,专家系统开发工具的研制进展也很快速,这对扩大专家系统的应用范围,加快专家系统的开发过程,将起到乐观地促进作用。随着计算机

19、科学技术整体水平的提高,分布式专家系统、协同式专家系统等新一代专家系统的争论也进展很快。在新一代专家系统中,不但采纳基于规章的推理方法,而且采纳了诸如人工神经网络的方法与技术。3.7 Agent系统分布式人工智能在20世纪70年月后期消失,是人工智能争论的一个重要分支。分布式人工智能系统一般由多个Agent(智能体)组成,每一个Agent又是一个半自治系统,Agent之间以及Agent与环境之间进行并发活动,并通过交互来完成问题求解。3.8 计算机视觉计算机视觉是一门用计算机实现或模拟人类视觉功能的新兴学科,其主要争论目标是使计算机具有通过二维图像认知三维环境信息的力量,这种力量不仅包括对三维

20、环境中物体外形、位置、姿势、运动等几何信息的感知,而且还包括对这些信息的描述、存储、识别与理解。目前,计算机视觉已在人类社会的很多领域得到胜利应用。例如,在图像、图形识别方面有指纹识别、染色体识字符识别等;在航天与军事方面有卫星图像处理、飞行器跟踪、成像精确制导、景物识别、目标检测等;在医学方面有图像的脏器重建、医学图像分析等;在工业方面有各种监测系统和生产过程监控系统等。3.9 机器翻译机器翻译是采用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。目前,国内的机器翻译软件不下百种,依据这些软件的翻译特点,大致可以分为三大类:词典翻译类、汉化翻译类和

21、专业翻译类。词典类翻译软件的代表是“金山词霸”,堪称是多快好省的电子词典,它可以快速查询英文单词或词组的词义并供应单词的发音,为用户了解单词或词组含义供应了极大的便利。汉化翻译软件的典型代表是“东方快车2000”,它首先提出了“智能汉化”的概念,使翻译软件的帮助翻译作用更加明显。3.10 医学领域人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYClN专家系统。1982年,美国PittSbUrgh高校MilIer发表了闻名的作为内科医生询问的Intemist2内科计算机帮助诊断系统的争论成果,1977年改进为IntemiSt2,经过改进后成为现在的CAU-CEUS,199

22、1年美国哈佛医学院Barnett等开发的DEX-PLAlN,包含有2200种疾病和8000种症状。我们我国研制基于人工智能的专家系统始于上世纪70年月末,但是进展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟闻名老中医关幼波大夫对肝病诊治的程序。上世纪80年月初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门高校、重庆高校、河南医科高校、长春高校等高等院校和其他争论机构开发了基于人工智能的医学计算机专家系统,并胜利应用于临床。3.11 技术争论的应用人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采纳

23、专家系统方法对超声损伤(UT)中缺陷的性质,外形和大小进行推断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术娴熟。阅历丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的学问来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错力量。人工智能技术也被引入到了计算机网络领域,计算机网络平安管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的快速进展,网络技术的平安是我们关怀的重点,因此我们必需在传统技术的基础上进

24、行网络平安技术的改进和变更,大力进展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们供应了可能性。4人工智能面临的问题人工智能(Al)学科自1956年诞生至今已走过50多个年头,就争论解释和模拟人类智能、智能行为及其规律这一总目标来说,已经迈出了可喜的一步,某些领域已取得了相当的进展。但是人工智能争论尚存在不少问题,这主要表现在下列几个方面:1宏观与微观隔离一方面是哲学、认知科学、思维科学和心理学等学科所争论的智能层次太高、太抽象;另一方面是人工智能规律符号、神经网络和行为主义所争论的智能层次太低。这两方面之间相距太

25、远,中间还有很多层次未予争论,无法把宏观与微观有机地结合起来和相互渗透。2全局与局部割裂人类智能是脑系统的整体效应,有着丰富的层次和多个侧面。但是,符号主义只抓住人脑的抽象思维特性;连接主义只仿照人的形象思维特性;行为主义则着眼于人类智能行为特性及其进化过程。它们存在明显的局限性。必需从多层次、多因素、多维和全局观点来争论智能,才能克服上述局限性。3理论和实际脱节大脑的实际工作,在宏观上我们已知道得不少;但是智能的千姿百态,变幻莫测,简单得难以理出清楚的头绪。在微观上,我们对大脑的工作机制却知之甚少,似是而非,使我们难以找出规律。在这种背景下提出的各种人工智能理论,只是部分人的主观猜想,能在某

26、些方面表现出智能就算相当胜利了。从整个进展的过程来看,人工智能进展曲折,而且还面临不少难题,详细表现在以下几个主要方面:1计算机博弈的困难博弈是自然界的一种普遍现象,它表现在对自然界事物的对策或智力竞争上。博弈不仅存在于下棋之中,而且存在于政治、经济、军事和生物的斗智和竞争之中。尽管西洋跳棋和国际象棋的计算机程序已经达到了相当高的水平,然而计算机博弈依旧面临着巨大的困难。这主要表现在以下两个方面的问题:其一是组合爆炸问题,状态空间法是人工智能中基本的形式化方法。若用博弈树来表示状态空间,对于几种常见的棋类,其状态空间都大得惊人,例如,西洋跳棋为10的40次方,国际象棋为10的120次方,围棋则

27、是10的700次方。如此巨大的状态空间,现有计算机是很难忍受的。其二是现在的博弈程序往往是针对二人对弈、棋局公开、有确定走步的一类棋类进行研制的。而对于多人对弈、随机性的博弈这类问题,至少目前计算机还是难以模拟实现的。2机器翻译所面临的问题在计算机诞生的初期,有人提出了用计算机实现自动翻译的设想。目前机器翻译所面临的问题仍旧是1964年语言学家黑列尔所说的构成句子的单词和歧义性问题。歧义性问题始终是自然语言理解(NLU)中的一大难关。同样一个句子在不同的场合使用,其含义的差异是司空见惯的。因此,要消退歧义性就要对原文的每一个句子及其上下文进行分析理解,查找导致歧义的词和词组在上下文中的精确意义

28、。然而,计算机却往往孤立地将句子作为理解单位。此外,即使对原文有了肯定的理解,理解的意义如何有效地在计算机里表示出来也存在问题。目前的NLU系统几乎不能随着时间的增长而增加理解力,系统的理解大都局限于表层上,没有深层的推敲,没有学习,没有记忆,更没有归纳。导致这种结果的缘由是计算机本身结构和争论方法的问题。现在NLU的争论方法很不成熟,大多数争论局限在语言这一单独的领域,而没有对人们是如何理解语言这个问题做深化有效的研讨。3自动定理证明和GPS的局限自动定理证明的代表性工作是1965年鲁宾逊提出的归结原理。归结原理虽然简洁易行,但它所采纳的方法是演绎,而这种形式上的演绎与人类自然演绎推理方法是

29、截然不同的。基于归结原理演绎推理要求把规律公式转化为子句集合,从而丢失了其固有的规律蕴含语义。前面曾提到过的GPS是企图实现一种不依靠于领域学问求解人工智能问题的通用方法。GPS想摆脱对问题内部表达形式的依靠,但是问题的内部表达形式的合理性是与领域学问亲密相关的。不管是用一阶谓词规律进行定理证明的归结原理,还是求解人工智能问题的通用方法GPS,都可以从中分析出表达力量的局限性,而这种局限性使得它们缩小了其自身的应用范围。4模式识别的困惑虽然使用计算机进行模式识别的争论与开发已取得大量成果,有的已成为产品投入实际应用,但是它的理论和方法与人的感官识别机制是全然不同的。人的识别手段、形象思维力量,

30、是任何最先进的计算机识别系统望尘莫及的,另一方面,在现实世界中,生活并不是一项结构严密的任务,一般家畜都能轻而易举地应付,但机器不会,这并不是说它们永久不会,而是说目前不会。上述存在问题和其它问题说明,人脑的结构和功能要比人们想象的简单得多,人工智能争论面临的困难要比我们估量的重大得多,人工智能争论的任务要比我们争论过的艰难得多。同时也说明,要从根本上了解人脑的结构和功能,解决面临的难题,完成人工智能的争论任务,需要查找和建立更新的人工智能框架和理论体系,打下人工智能进一步进展的理论基础平。我们至少需要经过几代人的持续奋斗,进行多学科联合协作争论,才可能基本上解开“智能”之谜,使人工智能理论达

31、到一个更高的水。5人工智能争论的展望技术的进展总是超乎人们的想象,要精确地猜测人工智能的将来是不行能的。但是,从目前的一些前瞻性争论可以看出将来人工智能可能会向以下几个方面进展:模糊处理、并行化、神经网络和机器情感。目前,人工智能的推理功能已获突破,学习及联想功能正在争论之中,下一步就是仿照人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是将来人工智能应用的新领域,将来智能计算机的构成,可能就是作为主机的冯诺依曼型机与作为智能外围的人工神经网络的结合。情感是智能的一部分,而不是与智能相分别的,因此人工智能领域的下一个突破可能在于给予计算机情感力量。情感力量对于计算机与人的自然交往

32、至关重要。人工智能的近期争论目标在于建筑智能计算机,用以代替人类从事脑力劳动,即使现有的计算机更聪慧更有用。正是依据这一近期争论目标,我们才把人工智能理解为计算机科学的一个分支。人工智能还有它的远期争论目标,即探究人类智能和机器智能的基本原理,争论用自动机(automata)模拟人类的思维过程和智能行为。这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的全部学科。人工智能的技术是其他信息处理技术及相关学科技术的集成。实现这一集成面临很多挑战,如制造学问表示和传递的标标准形式、理解各个子系统间的有效交互作用以及开发数值型与非数值学问综合表示的新方法,也包括定量模型与定性模型的结合

33、,以便以较快的速度进行定性推理。要集成的信息技术除数字技术以外,还包括计算机网络、远程通信、数据库、计算机图形学、语音与听觉、机器人学、过程掌握、并行计算、量子计算、光计算和生物信息处理等技术。除信息技术以外,将来的智能系统还要集成认知科学、心理学、社会学、语言学、系统学和哲学等。近年来,真体技术和数据挖掘技术的开发,也为人工智能的而技术集成供应了广泛的支持。人工智能的实现当然需要硬件的保证,然而,软件应是人工资能的核心技术。很多人工智能应用问题需要开发简单的软件系统,这有利于促进软件工程学科的消失与进展。软件工程能为肯定类型的问题求解供应标准化程序;学问软件则能为人工智能问题求解供应有效的编程手段。由于人工智能应用问题的简单性和广泛性,传统的软件设计方法明显不够用也是不适用的。人工智能软件所要执行的功能很可能随着系统的开发而发生变化。人工智能方法必需支持人工智能系统的开发试验,并允许系统有组织地从一个较小的核心原型渐渐进展成为一个完整的应用系统。随着人工智能应用方法的日渐成熟,人工智能的应用领域必将不断扩大。可以这样说,对于将来的进展,人工智能、智能机器和智能系统会比现在的电子计算机有着更为广泛的应用领域。任何科学或学科的进展都不是一帆风顺的,对于人工智能的将来的进展,我们需要保持乐观的态度,我们更加要信任人工智能肯定会有一个更加美妙的将来。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号