matlab心电信号R波检测.docx

上传人:夺命阿水 文档编号:499786 上传时间:2023-08-03 格式:DOCX 页数:14 大小:218.75KB
返回 下载 相关 举报
matlab心电信号R波检测.docx_第1页
第1页 / 共14页
matlab心电信号R波检测.docx_第2页
第2页 / 共14页
matlab心电信号R波检测.docx_第3页
第3页 / 共14页
matlab心电信号R波检测.docx_第4页
第4页 / 共14页
matlab心电信号R波检测.docx_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《matlab心电信号R波检测.docx》由会员分享,可在线阅读,更多相关《matlab心电信号R波检测.docx(14页珍藏版)》请在课桌文档上搜索。

1、生物医学信号处理实习报告学生姓名:学号:钛验室名称:项目名称:心电信号的R波检测项目内容:1)总结常用的QRS波检测算法;2)选择一种QRS波检测算法,理解该检测算法;3)编写程序,检测不含噪声的模拟ECG信号中R波4)对模拟ECG信号加高斯噪声生成含噪声的模拟ECG信号;5)利用前面编写的QRS波检测算法,检测含噪声模拟ECG信号的R波;6)分别检测不含噪声和含噪声的心率失常ECG信号(任务一中得到的MIT-BIH数据)原理(写出详细的计算公式)心电信号是体表电极测量的心电电压幅度随时间变更的函数,属于时域波形信号,虽然从人体体表不同部位的不同导联上所测得的心电波形各异,且不同个体的心电信号

2、存在差异,但全部正常的心电波形周期均可划分为P波!PR段!QRS波群!ST段!T波等几个主要部分,且每个特征子波段都代表着确定的生理学意义,如图(21)所示假如心脏发生了病变,就会使得心电信号在周期和波形形态上发生某些畸变,有关的心电图学专著二中给出了大量心脏病变的心电图示例,足以说明心电波形的困难多变性和电生理机理的困难性由于ECG信号简洁受到各种噪声干扰的影响和其本身波形形态的困难多变,一般状况下,干脆利用ECG信号的时域波形进行信号分类和疾病诊断比较困难,更多的是要对时域ECG信号进行某种变换或处理,提取ECG信号的变换域特征进行分析和推断体表心电图时域波形信号的幅度范围一般在IOuV一

3、4mv之间,典型值为IlnV左右从时域波形中可以看出,ECG信号特征段的分界处是波形上的拐点,即波形变更起伏最大的点,这也是ECG信号波形检测与定位时最关注的点,关于心电信号中典型波段及特征点所代表的生理学意义将在下一节中进行较为详细的论述图1-1标准的心电波形图不同导联所记录的心电图,在波形表现上会有所不同,但一个正常的心电波形周期图基本上都是由一个P波,一个QRS披群,一个T波以及过渡期所组成有时在T波后,还会出现一个小的U波心电信号的这些特征波形和过渡期均代表着确定的生理学意义,现以MLH导联的正常心电图波形为例,如图(1-1)所示,对心电波形的主要组成及其特点进行简要介绍。(I)P波:

4、也叫心房去极波,反映的是左右两心房去极化过程的电位变更波形一般圆钝光滑,历时0.080.11:,波幅不超过0.25mV两心房复极化过程所产生的电位变更称为Ta波,它通常与P-R段!QRS波群或S-T段重叠在一起,且波幅很低,在心电图上不易辨别。(2)PR间期(或称PQ间期):是P波起点到QRS波群起点之间的时间间隔,反映了自心房除极起先至心室除极起先的一段时间正常成人的PR间期为0.120.20:若超过0.205,一般表明有房室传导阻滞的发生PR间期的长短与年龄及心率有关。(3)QRS波群:反映两心室去极化过程的电位变更典型的QRS波群包括三个紧密相连的电位波动:第一个向下的波称为Q波;紧接着

5、是向上!高而尖峭的R波;最终是向下的S波在不同导联中,这三个波不愿定都出现,各波的幅度变更也较大历时约0.060.105,o(4)ST段:指QRS波群终点与T波起点之间的线段,一般与零电位基线平齐在这段时期内,因心室各部分都已全部进入除极化状态,但尚未起先复极,故心室各部分之间没有电位差存在,心电曲线复原到基线水平但若有冠状动脉供血不足或心肌梗死等状况发生时,ST段常会偏离基线,并超过确定的幅度范围。(5)T波:反映两心室复极化过程的电位变更波形圆钝,升降支并不完全对称,波形的前支较长而后支较短,占时约0050.255T波方向应与QRS波群的主波方向一样在以R波为主的导联中,其波幅应不低于本导

6、联R波的1/10。(6)Q-T间期:指从QRS波群起点到T波终点之间的时间,它代表心室起先去极化到全部复极化完毕所需的时间这一间期的长短与心率密切相关心率越快,QT间期越短:反之,则Q-T间期越长正常的QT间期依心率!年龄及性别不同而有所不同.当心率为75次/分时,QT间期为0.30-0.405分析QT间期的变更,对疾病的早期诊断和分析抗心律失常药物对心脏的影响,可起到确定的帮助作用由于QT间期受心率的影响比较大,临床上经常接受修正的QT间期,即接受Bazett公式计算:QT=-=(2-1)(7)U波:T波后0.020.04:可能会出现一个与T波方向一样的低宽U波,其成因和生理意义目前尚不特殊

7、清楚。本文留意于QRS波的检测,而在查阅一些文献资料以后,发觉QRS波的检测主要分为基于小波变换的心电信号ORS波检测与基于EMO与Marr小波变换的心电信号ORS波检测两种。基于小波变换的心电信号ORS波检测小波变换可以分为连续小波变换(CWT)离散栅格小波变换(DWT)和离散序列的小波变换(DSwT)o信号x(t)的小波变换定义式是:卬FSz0=7;内,)。(宁M其中(t)是基本小波又称母小波函数dW=FH是母小波经过移位和伸缩所生的一组函数,称之为小波基函数,a是尺度因子,它实现对母小波函数的伸缩变换,b是时移变量,它实现对母小波函数的移位变换,以确定对信号分析的时间中心在连续小波变换中

8、,a、b、t均是连续变量,而在离散小波变换中,需对它们进行离散化,常取a=ab=kabn9j三Z,当a=2,bn=1时就称之为二进离散小波变换,然而取a=时,在实际信号分析中有时显得尺度跳动跨度太大,当希望尺度a在a0的范围内取随意值进行分析时就须要进行连续小波变换下面将依据心电信号的连续小波变换模极大值线检测和定位R波峰。心电信号的R波峰是奇异点,而且它具有较大的幅度和较高的斜率等典型特征,依据基于小波变换的信号奇异性检测理论可知,每个R波的位置都对应于小波变换的模极大值的汇聚点,所以本算法首先对心电信号作连续小波变换并对信号依据心动周期进行分段,以便分别对一个心动周期内的波形进行奇异性分析

9、,然后分别在每一个心动周期内检测模极大值点,它们的连线就是模极大值线由此确定R波的位置,并剔除李氏指数为负对应为噪声产生的模极值线以及应用不应期策略削减噪声干扰,提高检测精确率。详细算法实现步骤如下:(1)对给定的心电信号作连续小波变换,小波基选用Haar小波,分解尺度a=32分解后得到的小波系数可在一个尺度一时间平面上以灰度图的形式表示。(2)对心电信号按心动周期进行分段,分段算法是首先对尺度一时间图按尺度a的方向进行累加,从而得到在尺度方向上小波变换的积分值随时间变更的曲线对于Haar小波而言,该曲线在R波之前有一个波峰,R波之后有一个波谷再分别选其正!负极大值的一半作为正负闭值,对积分值

10、随时间变更的曲线进行闭值化处理,并令大于正阂值的点为+1,小于负阂值的点为一1,在两者之间的点等于0,这样在每一个R波位置的之前就有一个+1,之后有一个一1,两者之间的区域为0把某一个一1位置和其后出现的第一个+1位置这一段数据的中点定为心动周期的分割点,从而实现了信号的分段,每一段都包括一个心动周期,而其R波在该段的中部。(3)对每个心动周期段信号的尺度一时间图,分别找出在每一个尺度下的正的极大值点和负的极大值点,将其连成线得到正!负模极大值线由每条正!负模极大值线的斜率求出该点对应的李氏指数,依据李氏指数判据剔除李氏指数小于0和大于1所对应的模极值线。(4)因为信号的连续小波变换的模极值线

11、有可能出现中断现象,所以需对每一条正!负模极大值线进行直线拟合,以分别求出它们在尺度a二0的时间位置,若在a=0时正。负模极大值并不收敛于同一个点,则取二者的平均值作为R波的初步位置。(5)在初步确定为R波的位置对应IOmS时间范围内,检测原信号的极值点,并将其最终确定为R波位置。(6)应用不应期判据由于心肌细胞除极化和复极化须要一个过程,存在一个确定不应期,所以除了室颤和室扑外一般人的心率小于300次/分。一个QRS波群产生以后,其后确定时间间隔内都不会出现另一个QRS波群,我们把这个时间间隔称为不应期本算法中的不应期设置为ZoomS所以检测到一个R波后将其后Zooms内的模极值都忽视,这样

12、可以避开很多由噪声干扰所引起的误检。基于EMO与Marr小波变换的心电信号ORS波检测针对常规的基于EMD的QRS波检测算法在信号存在严峻高频干扰的状况下会出现较多错检导致检测精确率较低的问题,本文将基于离散小波变换的QRS波检测算法与EMD方法相结合,提出一种基于EMD分解与Marr小波变换的心电信号QRS波检测新算法,来克服以上算法的不足,即尝试利用EMD分解法将非平稳心电信号分解为一系列具有不同特征尺度的IMF重量,然后利用Marr小波变换对相应低阶IMF重量叠加得到的重构信号进行奇异性分析,从而实现对原始心电信号QRS波的精确检测和定位。EMD分解:EMD分解的低阶本征模态重量中包含原

13、信号的骤变部分,而高阶本征模态重量中包含缓变部分。在心电信号中,对于高瞬时幅频的QRS波群自然就被支配到低阶高频模态重量中,而且R波的局部特征在第一、二本征模函数重量中得到了明显体现。但EMD算法中包含局部求极值!样条插值!边界效应处理等步骤,其计算量相当可观,使得处理速度特殊缓慢,而且目前没有快速算法,因此无法满足实时动态检测的要求而且每分解出一个本征模函数重量,计算量将增大一倍,所以本文依据心电信号的时频特性和检测的实时性要求,提出只对心电信号作三层阅历模式分解处理,然后将分解得到的第一、二、三本征模函数重量干脆相加重构得到一个新信号,通过对此新信号进行奇异性分析来实现QRS波的检测和定位

14、,这样不仅可以有效抑制基线漂移,高幅P波!T波以及伪差信号等低频干扰以及边界效应,而且还能将处理速度提高几倍。但是由第一、二、三模函数重量相加所构成的信号中往往还会包含QRS波带宽以外的频率重量,所以干脆对它进行阂值判决的R波检测算法的正确检测率必定不高,而且简洁受到高频噪声的干扰,抗干扰实力较差,但是把它作为定位R波的预处理信号是不错的选择另外EMD分解中筛选过程的中止准则常用方差,但也可依据信号特点手动设定筛选次数探讨发觉,筛选次数小,QRS波在本征模函数域对应的重量越不明显;而筛选次数越多,中心频率越大,特殊是运算量成倍增长通过反复试验尝试,本探讨通过对心电数据进行8次筛选,以微小的分解

15、损失换取高的计算速度,而且丝毫不影响QRS波的提取效果。小波基的选取由前面的探讨可知,在基于离散小波变换的QRS检测中,定位算法及检测效果与小波基函数的选择密切相关,Marr小波(又称Mexicanhat小波)具有良好的连续性、对称性以及指数衰减性,并且还具有一阶消逝矩等性质,特殊适合对信号进行奇异性检测。Marr小波的母函数是高斯函数的二阶导数与常数的乘积,表达式为:(x)=-v4(-x2)e2,2,xR因为它像墨西哥帽的截面,所以也常称之为墨西哥帽小波。Marr小波函数属于二次微分小波,在时域和频域都有很好的局部化,并且满U93=CC。由于Marr小波函数具有无限光滑性以及无穷次可微,并且

16、不对单独的噪声点敏感,再加上其独特的时域性质,能使包含信息的特征点特殊突出,因此本文选用Marr小波基进行R波峰值奇异点检测,应具有良好的定位特性和分析精度依据Marr小波基函数,计算得到相应的小波分解低通和高通滤波器的系数1和h,如下图2-1所示:依据人和气就可以利用Mallat算法递归计算出信号的小波变换。图2-1基于Marr小波变换的R波峰值奇异点定位由前面的探讨可知,信号X(t)的全部奇异点在尺度一时间平面的模极大值线上,且其小波变换k.)在a=2,(户WN)充分接近于零时,其模极大值点就是信号的突变点。由于Marr小波是二次微分小波,而且图形是以原点左右对称的,因此原始信号的奇异点在

17、其小波变换的各层微小环节信号上照旧保持为极大值,这就使得对原始心电信号R波峰值奇异点的检测可以转化为对特征尺度上微小环节信号的极大值点的检测相比之下,Marr小波能克服接受一次微分小波检测信号奇异点时存在的以下缺陷:(1)一次微分小波检测算法需通过检测小波模极大值对的过零点来定位信号奇异点,而过零点易受到噪声干扰,使得定位精度的稳定性难以保证。(2)一次微分小波变换算法中需借助于一对相邻的模极值点位置及两者之间的斜率间接确定R波位置,并且还要依据特征尺度进行时移修正,其计算过程相对比较困难和繁琐。而我们以软件为主的方法实现QRS波的检测滤波之后的信号一般经过一些变换以提高QRS波的份量,进而接

18、受一系列阈值进行判别,这些阈值有固定阈值法,也有可变阈值法。前者由于可能的干扰或高P、高T波的存在,若其滤波后超过其阈值便会产生假阳性(FP,falsepositive)结果;另外,当心律失常或QRS波幅度变小,阈值设置过高,会导致漏检产生假阴性(FN,falsenegative)结果。由于固定阈值的这些缺点,有探讨者提出了用可变阈值检测,以提高检测的精确率,所接受的可变阈值包括幅度阈值、斜率阈值和时间间隔阈值等。编官的源程序:Q波和S波通常是低幅高频波,一般Q波位于S波之前,S波位于R波之后,由于他们是一般向下的波,所以他们的峰值点和极值是对应的。因次在检测到R波向左和向右分别搜寻到极值点,

19、对应的就是Q波和S波。而现在我们只须要检测到R波,所以就不须要检测Q波与S波的极值点了。详细程序如下:ECG-R波检测:clearall;c1c;z=textread(,ECG.txt,);ECG=z(:,1);input=ECG(1:256);rate=ECG(100);sig=inut;Iensig=Iength(sig);Wtsigl=Cwt(sig,6,mexh,);Ienwtsigl=Iength(wtsigl);wtsigl(1:20)=0;wtsigl(lenwtsigl-20:Ienwtsigl)=0;y=wtsig1;yabs=abs(y);%?sigtem=y;Siglen

20、=Iength(y);sigmax=;fori=l:siglen-2if(y(i+l)y(i)&y(i+l)y(i+2)(y(i+l)y(i)Sy(i+l)thrrvalue=rvalue;sigmax(i,2);end;end;rvalue_l=rvalue;密解除误检,假如相邻两个极大值间距小于0.4,则去掉幅度较小的一-个Ienvalue=Iength(rvalue);i=2;whi1ei=lenvalueif(rvalue(i)-rvalue(i-1)*rateyabs(rvalue(i-1)rvalue(i-1)=;elservalue(i)=;end;Ienvalue=Iength

21、(rvalue);i=i-l;end;i=i+l;end;Ienvalue=Iength(rvalue);当在原信号上精确校准fori=l:Ienvalueif(wtsigl(rvalue(i)0)k=(rvalue(i)-5):(rvalue(i)+5);azb=max(sig(k);rvalue(i)=rvalue(i)-6+b;elsek=(rvalue(i)-5):(rvalue(i)+5);azb=min(sig(k);rvalue(i)=rvalue(i)-6+b;end;end;告打印订正及校准前后的R波信号figure(2);subplot(2,1r1),plot(1:Iens

22、ig,wtsigl,rvalue_l,wtsigl(rvalue_l),r.);titleECG订正及校准前的R波信号);subplot(2,1z2),plot(1:Iensigzsigzrvalue,sig(rvalue),r.);titleECG订正及校准后的R波信号,);NOlSYECG-R波检测:clearall;c1c;z=textread(,NOISYECG.txt,);ECG=z(:,1);input=ECG(1:256);rate=ECG(100);sig=inut;Iensig=Iength(sig);Wtsigl=Cwt(sig,6,mexh,);Ienwtsigl=Ien

23、gth(wtsigl);wtsigl(1:20)=0;wtsigl(lenwtsigl-20:Ienwtsigl)=0;y=wtsig1;yabs=abs(y);%?sigtemp=y;Siglen=Iength(y);sigmax=;fori=l:siglen-2if(y(i+l)y(i)&y(i+l)y(i+2)(y(i+l)y(i)iy(i+l)thrrvalue=rvalue;sigmax(i,2);end;end;rvalue_l=rvalue;解除误检,假如相邻两个极大值间距小于0.4,则去掉幅度较小的一个Ienvalue=Iength(rvalue);i=2;whi1ei=len

24、valueif(rvalue(i)-rvaIue(i-1)*rateyabs(rvalue(i-1)rvalue(i-l)=;elservalue(i)=;end;Ienvalue=Iength(rvalue);i=i-l;end;i=i+l;end;Ienvalue=Iength(rvalue);告在原信号上精确校准fori=l:Ienvalueif(wtsigl(rvalue(i)0)k=(rvalue(i)-5):(rvalue(i)+5);azb=max(sig(k);rvalue(i)=rvalue(i)-6+b;elsek=(rvalue(i)-5):(rvalue(i)+5);a

25、zb=min(sig(k);rvalue(i)=rvalue(i)-6+b;end;end;告打印订正及校准前后的R波信号figure(2);subplot(2,1,1),plot(1:Iensigzwtsigl,rvalue_l,wtsigl(rvaluel),r.);titleNO工SYECG订正及校准前的R波信号);subplot(2,1,2),plot(1:Iensig,sig,rvalue,sig(rvalue),r.,);titleNO工SYECG订正及校准后的R波信号,);结论飞画出要求的图形)TECG-R波检测所获得的结果如下图3-1与图4-1所示:图3-1图5-1图6-1总结实习报告分数:指亭老师1一

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号