PID调节器和水泵.doc

上传人:夺命阿水 文档编号:6448 上传时间:2022-06-20 格式:DOC 页数:32 大小:409KB
返回 下载 相关 举报
PID调节器和水泵.doc_第1页
第1页 / 共32页
PID调节器和水泵.doc_第2页
第2页 / 共32页
PID调节器和水泵.doc_第3页
第3页 / 共32页
PID调节器和水泵.doc_第4页
第4页 / 共32页
PID调节器和水泵.doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《PID调节器和水泵.doc》由会员分享,可在线阅读,更多相关《PID调节器和水泵.doc(32页珍藏版)》请在课桌文档上搜索。

1、word摘要本文介绍了恒压供水的根本原理以与系统构成的根底,说明了可编程控制器PLC在恒压供水系统中所担任的角色。从系统的整体设计方案和实际需求分析开始,严密的联系实际生活的需要,力求做到使系统运行稳定,操作简便,解决实际中问题,保证供水安全、快捷、可靠。恒压供水保证了供水质量,以PLC为主机的控制系统丰富了系统的控制功能,提高了系统的可靠性,为保证小区的供水正常,利用PLC控制的变频调速恒压供水系统,按照用户的需求按需调节水泵流量,根据夜间用水少可以只开一个小流量泵,并满足用户的流量需求,使真个系统始终保持高效节能的最优状态。关键字:PLC;恒压供水;变频器目录摘要第一章 绪论1第二章 方案

2、拟定2变频恒压供水控制方式的选择2第三章 变频恒压供水系统构成与工作原理5系统的构成53.2 工作原理773.4 主电路接线图8第四章 变频调速恒压供水系统的设计104.1 PLC的选型.104.2 PLC的接线1011124.5 PID调节器124.6 压力传感器的接线图134.7 原件表14第五章 PID算法在变频调速恒压供水系统中的应用175.1 PLC控制175.2 系统运行模式175.2.1 手动运行185.2.2 自动运行185.3 编程与介绍185.3.1 总编程的顺序功能图185.3.2 自动运行顺序功能图192021第六章 完毕语25致谢26参考文献27- 29 - / 32

3、第一章 绪论1.随着变频技术的开展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统以其环保、节能和高品质的供水质量等特点,广泛应用于多层住宅小区与高层建筑的生活、消防供水中。变频恒压供水的调速系统可以实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。在实际应用中如何充分利用专用变频器内置的各种功能,对合理设计变频恒压供水设备、降低本钱、保证产品质量等有着重要意义。变频恒压供水方式与过去的水塔或高位水箱以与气压供水方式相比,不论是设备的投资,运行的经济性,还是系统的稳定性、可靠性、自动化程度等方面

4、都具有无法比拟的优势,而且具有显著的节能效果。目前变频恒压供水系统正向着高可靠性、全数字化微机控制、多品种系列化的方向开展。追求高度智能化、系列化、标准化,是未来供水设备适应城镇建设中成片开发、智能楼宇、网络供水调度和整体规划要求的必然趋势。变频恒压供水系统能适用生活水、工业用水以与消防用水等多种场合的供水要求,该系统具有以下特点:(1)供水系统的控制对象是用户管网的水压,它是一个过程控制量,同其他一些过程控制量(如:温度、流量、浓度等)一样,对控制作用的响应具有滞后性。同时用于水泵转速控制的变频器也存在一定的滞后效应。(2)用户管网中因为有管阻、水锤等因素的影响,同时又由于水泵自身的一些固有

5、特性,使水泵转速的变化与管网压力的变化成正比,因此变频调速恒压供水系统是一个线性系统。(3)变频调速恒压供水系统要具有广泛的通用性,面向各种各样的供水系统,而不同的供水系统管网结构、用水量和扬程等方面存在着较大的差异,因此其控制对象的模型具有很强的多变性。(4)在变频调速恒压供水系统中,由于有定量泵的参加控制,而定量泵的控制(包括定量泉的停止和运行)是时时发生的,同时定量泵的运行状态直接影响供水系统的模型参数,使其不确定性地发生变化,因此可以认为,变频调速恒压供水系统的控制对象是时时变化的。众所周知,水是生产生活中不可缺少的重要组成局部,在节水节能已成为时代特征的现实条件下,我们这个水资源和电

6、能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比拟落后,自动化程度低。主要表现在用水顶峰期,水的供应量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供应量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能使水管爆破和用水设备的损坏。在恒压供水技术出现以前,出现过许多供水方式。以下就逐一分析。(1)一台恒速泵直接供水系统这种供水方式,水泵从蓄水池中抽水加压直接送往用户,有的甚至连蓄水池也没有,直接从城市公用水网中抽水,严重影响城市公用管网压力的稳定。这种供水方式,水泵整日不停运转,有的可能在夜间用水低谷时段停止运行。这

7、种系统形式简单、造价最低,但耗电、耗水严重,水压不稳,供水质量极差。(2)恒速泵加水塔的供水方式这种方式是水泵先向水塔供水,再由水塔向用户供水。水塔的合理高度是要求水塔最低水位略高于供水系统所需要压力。水塔注满后水泵停止,水塔水位低于某一位置时再启动水泵。水泵处于断续工作状态中。这种供水方式,水泵工作在额定流量额定扬程的条件下,水泵处于高效区。这种方式显然比前一种节电,其节电率与水塔容量、水泵额定流量、用水不均匀系数、水泵的开、停时间比、开、停频率等有关。供水压力比拟稳定。但这种供水方式基建设备投资最大,占地面积也最大;水压不可调,不能兼顾近期与远期的需要;而且系统水压不能随系统所需流量和系统

8、所需要压力下降而下降,故还存在一些能量损失和二次污染问题。而且在使用过程中,如果该系统水塔的水位监控装置损坏的话,水泵不能进展自动的开、停,这样水泵的开、停,将完全由人操作,这时将会出现能量的严重浪费和供水质量的严重下降。(3)恒速泵加高位水箱的供水方式这种方式原理与水塔是一样的,只是水箱设在建筑物的顶层。高层建筑还可分层设立水箱。占地面积与设备投资都有所减少,但这对建筑物的造价与设计都有影响,同时水箱受建筑物的限制,容积不能过大,所以供水X围较小。一些动物甚至人都可能进入水箱污染水质。水箱的水位监控装置也容易损坏,这样系统的开、停,将完全由人操作,使系统的供水质量下降能耗增加。(4)恒速泵加

9、气压罐供水方式这种方式是利用封闭的气压罐代替高位水箱蓄水,通过监测罐内压力来控制泵的开、停。罐的占地面积与水塔水箱供水方式相比拟小,而且可以放在地上,设备的本钱比水塔要低得多。而且气压罐是密封的,所以大大减少了水质因异物进入而被污染的可能性。但气压罐供水方式也存在着许多缺点。气压罐方式依靠压力罐中的压缩空气送水,气压罐配套水泵运行时,水泵在额定转速、额定流量的条件下工作。当系统所需水量下降时,供水压力将超出系统所需要的压力从而造成能量的浪费。同时水泵是工频率启动,且启动频繁,又会造成一定的能耗。频繁启动会造成系统的不稳定性。(5)变频调速供水方式这种系统的原理是通过安装在系统中的压力传感器将系

10、统压力信号与设定压力值作比拟,再通过控制器调节变频器的输出,无级调节水泵转速。使系统水压无论流量如何变化始终稳定在一定的X围内。变频调速式供水系统具有节约能源、节省钢材、节省占地、节省投资、调节能力大、运行稳定可靠的优势,具有广阔的应用前景和明显的经济效益与社会效益。图2-1 供水流程简图此次设计研究的对象是一栋楼房的供水系统。这栋楼有10层,由于高层楼对水压的要求高,在水压低时,高层用户将无法正常用水甚至出现无水的情况,水压高时将造成能源的浪费。如图2-1所示,是这栋小楼的供水流程。自来水厂送来的水先储存的水池中再通过水泵加压送给用户。通过水泵加压后,必须恒压供应每一个用户。2.1 变频恒压

11、供水控制方式的选择目前国内变频恒压供水设备电控柜的控制方式有:1逻辑电子电路控制方式这类控制电路难以实现水泵机组全部软启动、全流量变频调节,往往采用一台泵固定于变频状态,其余泵均为工频状态的方式。因此,控制精度较低、水泵切换时水压波动大、调试较麻烦、工频泵起动时有冲击、抗干扰能力较弱,但其本钱较低。2单片微机电路控制方式这类控制电路优于逻辑电路,但在应付不同管网、不同供水情况时,调试较麻烦;追加功能时往往要对电路进展修改,不灵活也不方便。电路的可靠性和抗干扰能力都不太好。3带PID回路调节器或可编程序控制器(PLC)的控制方式该方式变频器的作用是为电机提供可变频率的电源。实现电机的无级调速,从

12、而使管网水压连续变化。传感器的任务是检测管网水压,压力设定单元为系统提供满足用户需要的水压期望值。压力设定信号和压力反应信号在输入可编程控后,经可编程控制器内部PID控制程序的计算,输出给变频器一个转速控制信号。还有一种方法是将压力设定信号和压力反应信号送入PID回路调节器,由PID回路调节器在调节器内部进展运算后,输入给变频器一个转速调节信号。由于变频器的转速控制信号是由可编程控制器或PID回路调节器给出的,所以对可编程控制器来讲。既要有模拟量输入接口,又要有模拟量输出接口。由于带模拟量输入,输出接口的可编程控制器价格很高,这无形中就增加了供水设备的本钱。假如采用带有模拟量输入,数字量输出的

13、可编程控制器,如此要在可编程控制器的数字量输出口端另接一块PWM调制板,将可编程控制器输出的数字量信号转变为模拟量。这样,可编程控制器的本钱没有降低,还增加了连线和附加设备,降低了整套设备的可靠性。如果采用一个开关量输入,输出的可编程控制器和一个PID回路调节器,其本钱也和带模拟量输入,输出的可编程控制器差不多。所以,在变频调速恒压给水控制设备中,PID控制信号的产生和输出就成为降低给水设备本钱的一个关键环节。4新型变频调速供水设备针对传统的变频调速供水设备的不足之处,国内外不少生产厂家近年来纷纷推出了一系列新型产品,如华为的TD2100;施耐德公司的Altivar58泵切换卡;SANKEN的

14、SAMCO I系列;ABB公司的ACS600、ACS400系列产品;富士公司的GIISPIIS系列产品;等等。这些产品将PID调节器以与简易可编程控制器的功能都综合进变频器内,形成了带有各种应用的新型变频器。由于PID运算在变频器内部,这就省去了对可编程控制器存贮容量的要求和对PID算法的编程,而且PID参数的在线调试非常容易,这不仅降低了生产本钱,而且大大提高了生产效率。由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。同时,为了保证水压反应信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反应信号进展换算,使系统的调试非常简单、方便。考虑以上四种方案

15、后,此次设计采用第四种方案。如图2-2所示。图2-2 供水系统方案图第三章 变频恒压供水系统构成与工作原理3.1 系统的构成图3-1 系统原理图如图3-1所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器与假如干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,一般采用电阻式传感器(反应05V电压信号)或压力变送器(反应420mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。从原理框图,我们可以看出变频调速恒压供水系统由执行机构、

16、信号检测、控制系统、人机界面、以与报警装置等局部组成。(1)执行机构执行机构是由一组水泵组成,它们用于将水供入用户管网,图中的3个水泵分为二种类型:调速泵:是由变频调速器控制、可以进展变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进展定量的补充。(2)信号检测在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号:水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反应信号。报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为

17、开关量信号。(3)控制系统供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个局部。供水控制器:它是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进展采集,对来自人机接口和通讯接口的数据信息进展分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵)进展控制。变频器:它是对水泵进展转速控制的单元。变频器跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。电控设备:它是由一组接触器、保护继电器、转换开关等电气元件组成。用于在供水控制器的控制下完成对水泵的切换、手/自动切换等。(4

18、)人机界面人机界面是人与机器进展信息交流的场所。通过人机界面,使用者可以更改设定压力,修改一些系统设定以满足不同工艺的需求,同时使用者也可以从人机界面上得知系统的一些运行情况与设备的工作状态。人机界面还可以对系统的运行过程进展监示,对报警进展显示。(5)通讯接口通讯接口是本系统的一个重要组成局部,通过该接口,系统可以和组态软件以与其他的工业监控系统进展数据交换,同时通过通讯接口,还可以将现代先进的网络技术应用到本系统中来,例如可以对系统进展远程的诊断和维护等(6)报警装置作为一个控制系统,报警是必不可少的重要组成局部。由于本系统能适用于不同的供水领域,所以为了保证系统安全、可靠、平稳的运行,防

19、止因电机过载、变频器报警、电网过大波动、供水水源中断、出水超压、泵站内溢水等等造成的故障,因此系统必须要对各种报警量进展监测,由PLC判断报警类别,进展显示和保护动作控制,以免造成不必要的损失3.2 工作原理合上空气开关,供水系统投入运行。将手动、自动开关打到自动上,系统进入全自动运行状态,PLC中程序首先接通KM6,并起动变频器。根据压力设定值(根据管网压力要求设定)与压力实际值(来自于压力传感器)的偏差进展PID调节,并输出频率给定信号给变频器。变频器根据频率给定信号与预先设定好的加速时间控制水泵的转速以保证水压保持在压力设定值的上、下限X围之内,实现恒压控制。同时变频器在运行频率到达上限

20、,会将频率到达信号送给PLC,PLC如此根据管网压力的上、下限信号和变频器的运行频率是否到达上限的信号,由程序判断是否要起动第2台泵(或第3台泵)。当变频器运行频率达到频率上限值,并保持一段时间,如此PLC会将当前变频运行泵切换为工频运行,并迅速起动下1台泵变频运行。此时PID会继续通过由远传压力表送来的检测信号进展分析、计算、判断,进一步控制变频器的运行频率,使管压保持在压力设定值的上、下限偏差X围之内。增泵工作过程:假定增泵顺序为l、2、3泵。开始时,1泵电机在PLC控制下先投入调速运行,其运行速度由变频器调节。当供水压力小于压力预置值时变频器输出频率升高,水泵转速上升,反之下降。当变频器

21、的输出频率达到上限,并稳定运行后,如果供水压力仍没达到预置值,如此需进入增泵过程。在PLC的逻辑控制下将1泵电机与变频器连接的电磁开关断开,1泵电机切换到工频运行,同时变频器与2泵电机连接,控制2泵投入调速运行。如果还没到达设定值,如此继续按照以上步骤将2泵切换到工频运行,控制3泵投入变频运行。减泵工作过程:假定减泵顺序依次为3、2、1泵。当供水压力大于预置值时,变频器输出频率降低,水泵速度下降,当变频器的输出频率达到下限,并稳定运行一段时间后,把变频器控制的水泵停机,如果供水压力仍大于预置值,如此将下一台水泵由工频运行切换到变频器调速运行,并继续减泵工作过程。如果在晚间用水不多时,当最后一台

22、正在运行的主泵处于低速运行时,如果供水压力仍大于设定值,如此停机并启动辅泵投入调速运行,从而达到节能效果。3.3 变频恒压供水系统中加减水泵的条件分析在上面的工作流程中,我们提到当一台调速水泵己运行在上限频率,此时管网的实际压力仍低于设定压力,此时需要增加恒速水泵来满足供水要求,达到恒压的目的。当调速水泵和恒速水泵都在运行且调速水泵己运行在下限频率,此时管网的实际压力仍高于设定压力,此时需要减少恒速水泉来减少供水流量,达到恒压的目的。那么何时进展切换,刁能使系统提供稳定可靠的供水压力,同时使机组不过于频繁的切换。尽管通用变频器的频率都可以在0-400HzX围内进展调节,但当它用在供水系统中,其

23、频率调节的X围是有限的,不可能无限地增大和减小。当正在变频状态下运行的水泵电机要切换到工频状态下运行时,只能在50Hz时进展。由于电网的限制以与变频器和电机工作频率的限制,50Hz成为频率调节的上限频率。当变频器的输出频率己经到达50Hz时,即使实际供水压力仍然低于设定压力,也不能够再增加变频器的输出频率了。要增加实际供水压力,正如前面所讲的那样,只能够通过水泵机组切换,增加运行机组数量来实现。另外,变频器的输出频率不能够为负值,最低只能是0Hz。其实,在实际应用中,变频器的输出频率是不可能降低到0Hz。因为当水泵机组运行,电机带动水泵向管网供水时,由于管网中的水压会反推水泵,给带动水泵运行的

24、电机一个反向的力矩,同时这个水压也在一定程度上阻止源水池中的水进入管网,因此,当电机运行频率下降到一个值时,水泵就己经抽不出水了,实际的供水压力也不会随着电机频率的下降而下降。这个频率在实际应用中就是电机运行的下限频率。这个频率远大于0Hz,具体数值与水泵特性与系统所使用的场所有关,一般在20Hz左右。由于在变频运行状态下,水泵机组中电机的运行频率由变频器的输出频率决定,这个下限频率也就成为变频器频率调节的下限频率。在实际应用中,应当在确实需要机组进展切换的时候才进展机组的切换。所谓延时判别,是指系统仅满足频率和压力的判别条件是不够的,如果真的要进展机组切换,切换所要求的频率和压力的判别条件必

25、须成立并且能够维持一段时间比如1-2分钟,如果在这一段延时的时间内切换条件仍然成立,如此进展实际的机组切换操作;如果切换条件不能够维持延时时间的要求,说明判别条件的满足只是暂时的,如果进展机组切换将可能引起一系列多余的切换操作。3.4 主电路接线图图3-2 主电路图电机有两种工作模式即:在工频电下运行和在变频电下运行。KM1、 KM3、 KM5 分别为电动机M1 、M2 、M3 工频运行时接通电源的控制接触器,KM0、 KM2 、KM4 分别为电动机M1、M2、 M3 变频运行时接通电源的控制接触器。热继电器(FR)是利用电流的热效应原理工作的保护电路,它在电路中的用作电动机的过载保护。熔断器

26、FU是电路中的一种简单的短路保护装置。使用中,由于电流超过允许值产生的热量使串接于主电路中的熔体熔化而切断电路,防止电气设备短路和严重过载。第四章 相关器件的选型与接线4.1 PLC的选型水泵M1、M2,M3可变频运行,也可工频运行,需PLC的6个输出点,变频器的运行与关断由PLC的1个输出点,控制变频器使电机正转需1个输出信号控制,报警器的控制需要1个输出点,输出点数量一共9个。控制起动和停止需要2个输入点,变频器极限频率的检测信号占用PLC2个输入点,系统自动/手动起动需1输入点,手动控制电机的工频/变频运行需6个输入点,控制系统停止运行需1个输入点,检测电机是否过载需3个输入点,共需15

27、个输入点。系统所需的输入输出点数量共为24个点。本系统选用FXos-30MR-D型PLC。4.2 PLC的接线图4-1 PLC的接线图Y0接KM0控制M1的变频运行,Y1接KM1控制M1的工频运行;Y2接KM2控制M2的变频运行,Y3接KM3控制M2的工频运行;Y4接KM4控制M3的变频运行,Y5接KM5控制M3的工频运行。X0接起动按钮,X1接停止按钮,X2接变频器的FU接口,X3接变频器的OL接口,X4接M1的热继电器,X5接M2的热继电器,X6接M3的热继电器。为了防止出现某台电动机既接工频电又接变频电设计了电气互锁。在同时控制M1电动机的两个接触器KM1、KM0线圈中分别串入了对方的常

28、闭触头形成电气互锁。频率检测的上/下限信号分别通过OL和FU输出至PLC的X2与X3输入端作为PLC增泵减泵控制信号。4.3 变频器的选型根据设计的要求,本系统选用FR-A540系列变频器,如如下图所示:图4-2 FR-A540的管脚说明4.4 变频器的接线管脚STF接PLC的Y7管脚,控制电机的正转。X2接变频器的FU接口,X3接变频器的OL接口。频率检测的上/下限信号分别通过OL和FU输出至PLC的X2与X3输入端作为PLC增泵减泵控制信号。图4-3 变频器接线图 PID调节器仅用P动作控制,不能完全消除偏差。为了消除残留偏差,一般采用增加I动作的PI控制。用PI控制时,能消除由改变目标值

29、和经常的外来扰动等引起的偏差。但是,I动作过强时,对快速变化偏差响应缓慢。对有积分元件的负载系统可以单独使用P动作控制。对于PD控制,发生偏差时,很快产生比单独D动作还要大的操作量,以此来抑制偏差的增加。偏差小时,P动作的作用减小。控制对象含有积分元件的负载场合,仅P动作控制,有时由于此积分元件的作用,系统发生振荡。在该场合,为使P动作的振荡衰减和系统稳定,可用PD控制。换言之,该种控制方式适用于过程本身没有制动作用的负载。利用I动作消除偏差作用和用D动作抑制振荡作用,在结合P动作就构成了PID控制,本系统就是采用了这种方式。采用PID控制较其它组合控制效果要好,根本上能获得无偏差、精度高和系

30、统稳定的控制过程。这种控制方式用于从产生偏差到出现响应需要一定时间的负载系统(即实时性要求不高,工业上的过程控制系统一般都是此类系统,本系统也比拟适合PID调节)效果比拟好图4-4 PID控制框图通过对被控制对象的传感器等检测控制量(反应量),将其与目标值(温度、流量、压力等设定值)进展比拟。假如有偏差,如此通过此功能的控制动作使偏差为零。也就是使反应量与日标值相一致的一种通用控制方式。它比拟适用于流量控制、压力控制、温度控制等过程量的控制。在恒压供水中常见的PID控制器的控制形式主要有两种:(1)硬件型:即通用PID控制器,在使用时只需要进展线路的连接和P、I、D参数与日标值的设定。(2)软

31、件型:使用离散形式的PID控制算法在可编程序控制器(或单片机)上做PID控制器此次使用硬件型控制形式。根据设计的要求,本系统的PID调节器内置于变频器中。图4-5 PID控制接线图压力传感器使用CY-YZ-1001型绝对压力传感器。改传感器采用硅压阻效应原理实现压力测量的力电转换。传感器由敏感芯体和信号调理电路组成,当压力作用于传感器时,敏感芯体内硅片上的惠斯登电桥的输出电压发生变化,信号调理电路将输出的电压信号作放大处理,同时进展温度补偿、非线性补偿,使传感器的电性能满足技术指标的要求。该传感器的量程为,工作温度为560,供电电源为283VDC。图4-6压力传感器的接线图水泵:M1、M2选用

32、40-160(I)A型,M3选用40-160(I)型,参数见表4.1所示。热继电器的选择:选用最小的热继电器作为电机的过载保护热继电器FR,FR1 FR2可选用规格其型号为TK-E02T-C,额定电流5-8A,FR3可选用规格其型号为TK-E02U-C,额定电流为69A熔断器的选择:在控制回路中熔断器FU选用RT18系列。接触器的选择:对于接触器KM选择的是规格SC-E03-C,功率3Kw按钮SB的选择:PLC各输入点的回路的额定电压直流24V,各输入点的回路的额定电流均小于40mA,按钮均只需具有1对常开触点,按钮均选用LAY3-11型,其主要技术参数为:UN=24VDC,IN=0.3A,含

33、1对常开和1对常闭触点。元件符号型号个数可编程控制器PLCFXos-30MR-D1变频器FR-A5401接触器KMSC-E03-C7水泵M1,M240-160(I)A2M340-160(I)1闸刀开关QSHD11-100/181熔断器FU1,FU2RT18 6A2FU3RT18 8A1热继电器FR1 FR2TK-E02T-C2FR3K-E02U-C1按钮SBLAY31110表4-1元件表总图水泵符号型号流量(m3/h)扬程(m)转速(r/min)电机功率(kw)M1,M240-160(I)A11282900M340-160(I)322900表4-2水泵的参数变频器适用电机容量KW)输出额定容量

34、(KVA)输出额定电流A过载能力电源额定输入交流电压/频率冷却方式FR-A540系列5.5型三菱12150%60s ,200% 0.5s (反时限特性)3相,380V至480V 50Hz/60Hz强制风冷表4-3 变频器的参数第五章 PLC控制与编程5.1 PLC控制PLC在系统中的作用是控制交流接触器组进展工频变频的切换和水泵工作数量的调整。工作流程如图5-1所示。图5-1 PLC程序流程图系统起动之后,检测是自动运行模式还是手动运行模式。如果是手动运行模式如此进展手动操作,人们根据自己的需要操作相应的按钮,系统根据按钮执行相应操作。如果是自动运行模式,如此系统根据程序与相关的输入信号执行相

35、应的操作。手动模式主要是解决系统出错或器件出问题在自动运行模式中,如果PLC接到频率上限信号,如此执行增泵程序,增加水泵的工作数量。如果PLC接到频率下限信号,如此执行减泵程序,减少水泵的工作数量。没接到信号就保持现有的运行状态。5.2 系统运行模式手动运行当按下SB7按钮,用手动方式。按下SB10手动启动变频器。当系统压力不够需要增加泵时,按下SBnn=1,3,5按钮,此时切断电机变频,同时启动电机工频运行,再起动下一台电机。为了变频向工频切换时保护变频器免于受到工频电压的反向冲击,在切换时,用时间继电器作了时间延迟,当压力过大时,可以手动按下SBnn=2,4,6按钮,切断工频运行的电机,同

36、时启动电机变频运行。可根据需要,停按不同电机对应的启停按钮,可以依次实现手动启动和手动停止三台水泵.该方式仅供自动故障时使用.2 自动运行由PLC分别控制某台电机工频和变频继电器,在条件成立时,进展增泵升压和减泵降压控制.升压控制:系统工作时,每台水泵处于三种状态之一,即工频电网拖动状态、变频器拖动调速状态和停止状态.系统开始工作时,供水管道内水压力为零,在控制系统作用下,变频器开始运行,第一台水泵M1,启动且转速逐渐升高,当输出压力达到设定值,其供水量与用水量相平衡时,转速才稳定到某一定值,这期间M1处在调速运行状态.当用水量增加水压减小时,通过压力闭环调节水泵按设定速率加速到另一个稳定转速

37、;反之用水量减少水压增加时,水泵按设定的速率减速到新的稳定转速.当用水量继续增加,变频器输出频率增加至工频时,水压仍低于设定值,由PLC控制切换至工频电网后恒速运行;同时,使第二台水泵M2投入变频器并变速运行,系统恢复对水压的闭环调节,直到水压达到设定值为止。如果用水量继续增加,每当加速运行的变频器输出频率达到工频时,将继续发生如上转换,并有新的水泵投人并联运行.当最后一台水泵M3投人运行,变频器输出频率达到工频,压力仍未达到设定值时,控制系统就会发出故障报警.降压控制:当用水量下降水压升高,变频器输出频率降至起动频率时,水压仍高于设定值,系统将工频运行时间最长的一台水泵关掉,恢复对水压的闭环

38、调节,使压力重新达到设定值.当用水量继续下降,每当减速运行的变频器输出频率降至起动频率时,将继续发生如上转换,直到剩下最后一台变频泵运行为止。.1 总程序的顺序功能图系统分为自动运行和手动运行两局部图5-2 总程序的顺序功能图.2 自动运行顺序功能图按下SB8按钮,系统进入自动运行模式,顺序功能图如5.3所示。图5-3 自动运行顺序功能图Y0接KM0控制M1的变频运行,Y1接KM1控制M1的工频运行;Y2接KM2控制M2的变频运行,Y3接KM3控制M2的工频运行;Y4接KM4控制M3的变频运行,Y5接KM5控制M3的工频运行系统起动时,KM1闭合,#1泵以变频方式运行。 当变频器的运行频率超出

39、一个上限信号后,PLC通过这个上限信号后将1#水泵有变频运行转为工频运行,KM1断开KM0吸合,同时KM3吸合变频起动第2#水泵。如果再次接收到变频器上限信号,如此KM3断开KM2吸合,第2#水泵由变频转为工频运行,3#水泵变频起动。如果变频器频率偏低,即压力过高,输出的下限信号使PLC关闭KM5、KM2,开启KM3,2#水泵变频起动。再次接到下限信号就关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。为了防止出现某台电动机既接工频电又接变频电设计了电气互锁。在同是控制M1电动机的两个接触器KM1、KM0线圈中分别串入了对方的常闭触头形成电气互锁。5.3.3 手动模式顺序功能图当按下SB9

40、按钮,系统进入手动运行模式。系统的每步动作都必须有相应的操作。顺序功能图如图5-4所示。图5-4 自动运行顺序功能图按下按钮SB9之后,启动了变频器,系统进入手动运行模式。当用户按下SBnn=1,3,5三台电机分别处于工频运行,当用户按下SBnn=2,4,6三台电机分别处于变频运行。可以多台电机于不同的频率工作,但一台电机只能以一种频率下工作。如#1电机,如果控制它工作的SB1,SB2按钮被同时按下如此发出警报且电机无法起动。5.3.4 程序说明1自动运行局部。起动1#泵按下起动按钮,系统检测采用那种运行模式。如果按钮SB7没按,如此使用自动运行模式。变频起动1#水泵。起动1#,2#泵:接收到

41、变频器上限信号,PLC通过这个上限信号后将1#水泵由变频运行转为工频运行,KM1断开KM0吸合,同时KM3吸合变频起动第2#水泵。起动1#,2#,3#泵:再次接收到变频器上限信号,如此KM3断开KM2吸合,第2#水泵由变频转为工频运行,3#水泵变频起动。起动1#泵:接到下限信号就关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。起动1#,2#泵:输出的下限信号使PLC关闭KM5、KM2,开启KM3,2#水泵变频起动。起动1#泵:接到下限信号关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。(2)手动运行局部按下手动起动按钮SB10,手动起动变频器。按下SB2,断开KM0,在10个计数脉

42、冲后起动M1在变工频电源下运行。按下SB4,断开KM2,在10个计数脉冲后起动M2在变频电源下运行。按下SB6,断开KM4,在10个计数脉冲后起动M3在变频电源下运行。按下SB1,断开KM1,在10个计数脉冲后起动M1在工频电源下运行。按下SB3,断开KM3,在10个计数脉冲后起动M2在工频电源下运行。按下SB5,断开KM5,在10个计数脉冲后起动M3在工频电源下运行。3公用局部当热继电器断开系统报警。电机只能在一种频率下运行,当电机工频/变频同时打开时将发出警报且电机停止运行。辅助继电器M1,M2,M3,M9依次控制输出继电器Y0,Y1,Y2,Y10按下停止按钮,所有泵停止运行。第六章 完毕

43、语本论文研究的是变频恒压供水系统。恒压供水系统以PLC和变频器为核心进展设计,借助于PLC强大而灵活的控制功能和内置PID的变频器优良的变频调速性能,实现了恒压供水的控制。该系统采用PCL控制变频器进展PID调节,按实际需要随意设定压力给定值,根据压差调整水泵的工作情况,实现恒压供水,使给水泵始终在高效率下运行,在启动时压力波动小,可控制在给定值的5%X围内。恒压供水在日常生活中非常重要,基于PLC和变频器技术设计的生活恒压供水控制系统可靠性高、效率高、节能效果显著、动态响应速度快。因实现了恒压自动控制,不需要操作人员频繁操作,节省了人力,提高了供水质量,减轻了劳动强度,可实现无人值班,节约管理费用。对整个供水过程来说,系统的可扩展性好,管理人员可根据每个季节的用水情况,选择不同的压力设定X围,不但节约了用水,而且节约了电能,达到了更优的节能方式,实现供水的最优化控制和稳定性控制。目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号