《2022净零热储能长时储能加速能源系统脱碳英文版.docx》由会员分享,可在线阅读,更多相关《2022净零热储能长时储能加速能源系统脱碳英文版.docx(81页珍藏版)》请在课桌文档上搜索。
1、McKinsey& CompanyLDESLONG DURATION ENERGY STORAGE COUNCILNet-zeroheat1.ongDurationEnergyStoragetoaccelerateenergysystemdecarbonizationPublishedinNovember2022bytheLDESCouncil.Copiesofthisdocumentareavailableuponrequestorcanbedownloadedfromourwebsite:.ThisreportwasauthoredbytheLDESCouncilincollaborati
2、onwithMcKinsey&Companyasknowledgepartner.Thisworkisindependent,reflectstheviewsoftheauthors,andhasnotbeencommissionedbyanybusiness,government,orotherinstitution.Theauthorsofthereportconfirmthat:1 .Therearenorecommendationsand/oranymeasuresand/ortrajectorieswithinthereportthatcouldbeinterpretedasstan
3、dardsorasanyotherformof(suggested)coordinationbetweentheparticipantsofthestudyreferredtowithinthereportthatwouldinfringeEUcompetitionlaw;and2 Itisnottheirintentionthatanysuchformofcoordinationwillbeadopted.Whilethecontentsofthereportanditsabstractimplicationsfortheindustrygenerallycanbediscussedonce
4、theyhavebeenprepared,individualstrategiesremainproprietary,confidential,andtheresponsibilityofeachparticipant.Participantsareremindedthat,aspartoftheinvariablepracticeoftheLDESCouncilandtheEUcompetitionlawobligationstowhichmembershipactivitiesaresubject,suchstrategicandconfidentialinformationmustnot
5、besharedorcoordinated-includingaspartofthisreport.ContentsPreface4Executivesummary8Acronyms131. TheroleofLDESinnet-zeroenergy142. TESasanenablertodecarbonizingheat183. LDEStechnologiescostandcompetitiveness244. TESbusinesscases345. Anintegratedenergysystemperspective486. UnlockingtheTESopportunity54
6、Conclusion57Appendix A: Methodologyandassumptions58Appendix B: StateoftheTESindustry67Acknowledgements69PrefaceWemustcapturethenarrowwindowofopportunitytoachieveanet-zeroenergysystem.Thedecarbonizationoftheenergysectorneedstoacceleratetobecomealignedwithanet-zeropathwaythatlimitsglobalwarmingtobelow
7、1.5oC.However,achievingnet-zeroemissionsby2050requiresmassivedevelopmentofrenewables,newandreinforcedinfrastructure,andtheadoptionofnewcleantechnologies.Manychallengescompoundinthistransition,assupplychainsneedtobescaledup,end-useequipmentneedstobeadapted,andinfrastructureneedstobedeployedandreinfor
8、ced(forexample,transmissionanddistributionelectricitygridexpansionscantakeupto15yearstorealize).Immediateactionisrequiredtomeetemission-reductiontargets,limittheimpactofclimatechange,andmaximizetheopportunitiesahead.Asoutlinedinthe2021LDESNet-zeropowerreport,1long-durationenergystorage(LDES)offersal
9、ow-costflexibilitysolutiontoenableenergysystemdecarbonization.LDES, Whenever LDES is mentioned as a technology group, it is defined as a technology storing energy for ten or more hours, as per ARPA-Esdefinition. When LDES is mentioned in analysis or modeling, the actual duration length is always spe
10、cified, in line with NRELs recommendation.canbedeployedtostoreenergyforprolongedperiodsandcanbescaledupeconomicallytosustainenergyprovisionformultiplehours(tenormore),days(multidaystorage),months,andseasons.LDEScanstoreenergyinvariousforms,includingmechanical,thermal,electrochemical,orchemicalandcan
11、contributesignificantlytothecost-efficientdecarbonizationoftheenergysystem.Furthermore,ithelpsaddressmajorenergytransitionchallengessuchassolarandwindenergysupplyvariability,gridinfrastructurebottlenecks,oremissionsfromheatgeneration.ThisreportpresentsthelatestviewontheroleofLDESinhelpingachieveNet-
12、zeropowerandheatby2050, It is assumed that the power sector achieves net-zero emissions by 2040, and other sectors by 2050.focusingonthepotentialroleofthermalenergystorage(TES)inrealizingnet-zeroheat.ItbuildsonpriorLDESCouncilresearchandanalysisandpresentsupdatedcostperspectivesbasedondatafromLDESCo
13、uncilmembers.Asafollow-uptopreviousLDESCouncilpublications,thisreportfocusesontheheatsector,apivotalcomponentinachievingglobaldecarbonizationandclimatetargets.Accordingly,italsofocusesonaparticularsetofLDEStechnologies,TES,whichcanstoreheat,decarbonizeheatapplications,andintegraterenewablesinthissec
14、torandthebroaderenergysystem.Thisreportalsohighlightshowanintegratedsystemapproachisimperativetocost-efficientlydecarbonizingenergysystems. The definition of energy system used in this report includes all components related to the production, nversion, and use of electrical energy, heat, and hydroge
15、n. The electrification of the transport sector is included indirectly in the final electricity demand scenario from the McKinsey Global Energy Perspective.Electricity,heat,andhydrogenarebecomingincreasinglyinterconnected,drivenbythegrowinguptakeofrenewableenergyandaccesstotechnologiesthatintegrateth
16、em,suchasheatpumpsandLDES(Exhibit1).Thiscreatestheneedtolookattheintegratedecosystemratherthantheseparateenergysectorstojointlyinformcost-optimizedenergyinfrastructuredevelopments.Theanalysesinthisreporttakeinterdependenciesbetweenpower,heat,andhydrogenintoaccounttoassessthecost-optimizedmixofflexib
17、ilitysolutionsneededfortheheatandpowersectors.IthighlightstherelationshipbetweenpowerLDESandTEStoacceleratetheenergytransition,andtherolethatTEScanplayindecarbonizingheatapplications.Hydrogen-to-heatExhibit1Power,heat,andhydrogeninterconnectionsPowerPower-to-hydrogenHydrogen-to-powerAbouttheLDESCoun
18、cilTheLDESCouncilisaglobal,executive-ledorganizationthatstrivestoacceleratethedecarbonizationoftheenergysystematthelowestcosttosocietybydrivingtheinnovationanddeploymentofLDESanddecreasingemissions.TheLDESCouncilwaslaunchedattheConferenceofParties(COP)26andcurrentlycomprises64companies. Member count
19、 at the time of the release of this report in November 2022.Itprovidesfact-basedguidancetogovernmentsandindustry,drawingfromtheexperiencesofitsmembers,whichincludeleadingtechnologyproviders,industryandservicecustomers,capitalproviders,equipmentmanufacturers,andlow-carbonenergysystemintegratorsanddev
20、elopers.Alltechnologyproviders,industryandservicescustomers,capitalproviders,equipmentmanufacturers,andlow-carbonenergysystemintegratorsanddevelopersaremembersoftheLDESCouncil.TechnologyprovidersiIMo三CXElectrifIed二ThermalSolutionsezncmAGRLDIEnefgiSeItlAmbriIlENERGYVAULTFormenergyALIARyeDevelopment电A
21、ZELlOZ=Xenercsvdovie-f8Xyn,AucvHEATRIIXTWRMALSaItXBreezel-.=-.7.ORGYsLIHighview11Power,MINESTORAGEStiesdal(BBENMlLLEENEKOYHydrostorPeniel,StorworksU臼IULJtDaENLIGHTE11INVINITYI-Ie11eR0Ysystems三=*J三2THERMOWA11ceres9eosIIKRAFTK_lBLOCK/QTORCyECHOGENpowersystemsESSKXOXOj.redflowOSTORAGEIndustryandservice
22、scustomers!rW4Ut0dTotaiEner9sExecutivesummaryDecarbonizingtheglobalenergysystemrequiresanintegratedapproachtoinformoptimalenergyinfrastructuredevelopmentsinatimelymanner.Italsorequiressystemicchangesaswemovetowardenergysystemspredominantlysuppliedbyvariablerenewableenergy.Torealizea1.5scenarioby2050
23、,projectionsestimateafivefoldincreaseintotalrenewablessupplyandatwofoldincreaseintotalelectricitydemandbythatyear. Net zero by 2050, a roadmap for the global energy sector, IEA, 2021.Furthermore,thereareearlysignsthatpower,heat,andhydrogenarebecomingincreasinglyinterconnectedthroughsector-uplingtech
24、nologieslikeheatpumps,electrolyzers,orhydrogenboilers.This,inadditiontothegrowingshareofrenewablesandelectrification,furtherincreasestheenergysystemscomplexity.Therefore,anintegratedapproachcouldhelpensureacost-optimizedandtimelyenergytransition.1.DESoffersacleanflexibilitysolutiontosecurepowerandhe
25、atreliability.LDESencompassesarangeoftechnologiesthatcanstoreelectricalenergyinvariousformsforprolongedperiodsatacompetitivecostandatscale.Thesetechnologiescanthendischargeelectricalenergywhenneeded-overhours,days,orseasons-inordertofulfilllong-durationsystemflexibilityneedstoshifttheincreasingvaria
26、ble,renewableenergysupplytomatchdemand.Thisreportbuildsonthe2021LDESCouncilNet-zeropowerreportbyfocusingontheroleofLDESinrealizingnet-zeropowerandheatwhileexpandingontherolethermalenergystorage(TES)canplayindecarbonizingheatapplications.TESprovidesanLDESsolutiontoelectrifyingandfirmingheat.Decarboni
27、zingtheheatsectoriscrucialforrealizinganet-zeroenergysystemby2050,giventhatitrepresentsroughly45percentofallenergy-relatedemissionstoday. The baseline includes emissions from heating, industrial processes, transport, and other energy sector emissions. It excludes power generation emissions.TEScandec
28、arbonizeheatapplicationsbyelectrifyingandfirmingheatwithvariablerenewableenergysources.Inaddition,itcanoptimizeheatconsumptioninindustrialprocessesandfacilitatethereuseofwasteheatortheintegrationofcleanheatsources(forexample,fromthermalsolar).TEScanenablethecost-efficientelectrificationofmostheatapp
29、lications.TEScoversavarietyoftechnologiesthatcanaddressawiderangeofstoragedurations(fromintradaytoseasonal)andtemperatures(fromsubzeroto2,400oC).Accordingtothe2022LDESbenchmarkresults,TESenablescost-efficientelectrificationanddecarbonizationofthemostwidelyusedheatapplications,namelysteamandhotair.Th
30、ebenchmarkresultsalsoindicatethatfirmingheatisverycost-efficientwhenthefinaldemandisheat.SomeTEStechnologiesarealreadycommerciallyavailablewithvariouseasy-to-customizeuses.Todate,themostcommonlydeployedTEStechnologiesincludemedium-pressuresteam,withvariousapplications,includinginthechemicalsorfoodan
31、dbeverageindustries.Additionally,developingtechnologieswillexpandtheTESsolutionspacewithinnovativeconceptsandaddresstemperatureneedswellabove1,000oC.TESbusinesscasesdemonstrateprofitabilityataninternalrateofreturn(IRR)of16to28percent,subjecttolocalmarketconditions.Theseincludeoptimalphysicalconfigur
32、ations(accesstocaptiverenewables,captiveheat,orgridelectricity)andmarketdesigns(includinglowgridfeesandtheremunerationofflexibility).ThebusinesscaseassessmentscoverawiderangeofrealisticTESusecases,namely:medium-pressuresteaminachemicalsplant(upto28percentIRR),districtheatingsuppliedbyapeakerplant(up
33、to16percentIRR),high-pressuresteaminanaluminarefinery(upto16percentIRR),andco-generationinanoff-gridgreenhouse(upto22percentIRR).Allmarket-exposedbusinesscasesindicateasupportiveecosystemthatacknowledgesthevalueofflexibility,suchasancillaryservices,wouldlikelybecriticaltoensuringwidecommercialadopti
34、on.Thebusinesscasewithbehind-the-meterrenewablegenerationshowsthatTEScanalreadybecommerciallyfeasibleregardlessofexternalmarketconditions.1.DEStechnologiesareexpectedtobecomeincreasinglycost-competitiveasthemarketmatures.Theupdated2022powerLDEScostbenchmarksolidifiestheforecastthatLDEScostswilldecli
35、neinthefollowingyears,suggestinga25to50percentoverallcapitalexpenditure(capex)reductionofpowerLDEStechnologiesby2040.Inaddition,the2022TEScostbenchmarkindicatesthatTEScapexisalsoexpectedtodeclineby2040,withanestimateddropofbetween5and30percentforpowercapexand15and70percentforenergystoragecapex.Acase
36、studyontheportofRotterdamexemplifiestherelevanceofLDESfordecarbonizingenergyhubswhilecreatingsystemvalue.Thecasestudyrepresentsatypicalindustrialhubwithsignificantpowerandheatdemandon-site,whereacombinationofTESandpowerLDEScanplayaroleindecarbonizingthesystem.InanindustriallocationliketheportofRotte
37、rdam,theneedforindustrialheatingcanfundamentallychangetheconfigurationforanet-zeroenergysystem.TEScanfirmthevariableoffshorewindsupplyintoamorestablesupplyofcleanheatforindustrialheating,includinghigh-temperatureheating.TEScoulddoubletheglobalLDEScapacitypotentialinacost-optimizednet-zeroenergypathw
38、ayinlinewitha1.5oCscenario.Basedonintegratedsystemmodeling,TEScanexpandtheoverallinstalledcapacitypotentialofLDEStobetween2and8TWby2040(versus1to3TWwithoutTES),whichtranslatestoacumulativeinvestmentofUSD1.6trilliontoUSD2.5trillion.TESenablesthisadditionalLDESopportunitybyprovidingacost-efficientalte
39、rnativetodecarbonizingheatandhigh-tem-peratreheatingapplications.ThisisestimatedtoreducesystemcostsbyuptoUSD540billionperyearwhilecreatingbroadersystemvaluebyenablinganacceleratedrenewablesbuild-outandoptimizationofgridutilization.CriticalsupportelementscouldhelpdrivemoreTESadoption.Asupportiveecosy
40、stemthatrewardsflexibilityandpromotesatechnologicallylevelplayingfieldforflexibilitysolutionslikeLDESiscriticaltoacceleratingthescale-upofTES.Additionally,increasingawarenessandprovidingsupporttoderiskinitialinvestmentsispivotal.Businessleaders,policymakers,andinvestorshaveanimportantroletoplayinunl
41、ockingtheTESpotentialbyreducinglong-termuncertaintyandtherebyshapingthecost-optimizedpathwaytowardthenet-zeroenergysystemofthefuture.Net-zeroheat1.ongDurationEnergyStoragetoaccelerateenergysystemdecarbonizationThe transition to net zero requires an integrated energy system perspectiveRealizing a cos
42、t-optimized transition to net zero across all energy sectors requires significant deployment of renewables, increased interconnections between power, heat, and hydrogen, and supporting infrastructure. System flexibility will be critical to securing energy system reliabilityHeatdecarbonizationiscriti
43、calfornetzero,asitaccountsfor-45%ofenergy-relatedemissionsGlobal final energy consumption by sectorShare of global energy-related CO2e emissions1Machinery, appliances, lightingIndustryTransportationBuildings: heatingDistrict heating Buildings: cookingHeatingandcooling20%from industrial heat10%from b
44、uildings heatLongdurationenergystorageenablesacost-optimizedpathwaytowardnetzeroAcost-optimizednet-zeropathwaycouldby2040resultin.2-8 TWdeployed LDEScapacityUSD 1.7-3,6 trcumulative LDES capexinvestmentsOU.O-.uptoUSD540bnsystemsavingsperyearThermalenergystorage(TES).prisesawiderangeoftechnologies2,4
45、00oC0(Q)Storage duration use caseSome TES technologies arealready commercially availableStorage temperatureR&D Pilots Commercially availableTechnical maturityTESenableselectrificationofheatapplicationswithdifferenttemperatureanddurationneeds. is a cost-efficient 24/7 heat decarbonization solutionTec
46、hnologyLevelized cost of heat (steam) for selected technologies1 USD/MWhbatterybatteryTESmakesstoringheatmorecost-efficientthanstoringpowerforheatapplications.canpresentattractivebusinesscasessubjecttolocalconditions.IRRsforselectedusecasesUpsidecase28%16%16%22%Basecase6%0%ChemicalsOff-gridDistrictheatingAluminaplantgreenhousepeakerplantrefineryTESbehind-the-meterbusinesscasescanbepositiveastherearenogridconnectionfees.