《薄片队列微电极微细电火花加工方法及装置.docx》由会员分享,可在线阅读,更多相关《薄片队列微电极微细电火花加工方法及装置.docx(13页珍藏版)》请在课桌文档上搜索。
1、PATEXPLRER专利探索者一全球创新始于探索薄片队列微电极微细电火花加工方法及装置申请号:CN.2申请日:20170516申请(专利权)人:深圳大学地址:广东省深圳市南山区南海大道3688号发明人:徐斌,伍晓宇,雷建国,梁雄,赵航,程蓉,郭登极,阮双琛主分类号:B23H1/00公开(公告)号:CNB公开(公告)日:20190426代理机构:深圳市明日今典知识产权代理事务所(普通合伙)代理人:王杰辉1(19)中华人民共和国国家知识产权局(21)申请号CN. 2(12)发明专利(10)授权公告号CNB (45)授权公告日20190426(22)申请日20170516(71)申请人深圳大学地址广
2、东省深圳市南山区南海大道3688号(72)发明人徐斌,伍晓宇,雷建国,梁雄,赵航,程蓉,郭登极,阮双琛(74)专利代理机构深圳市明日今典知识产权代理事务所(普通合伙)代理人王杰辉(54)发明名称,也泛河,4列汽电极上的弟”赣电国依次R L曾I j1R 相电的总IwHrit蝴也火/如. fi rm 上形或IaGaM薄片队列微电极微细电火花加工方法及装置(57)摘要本发明揭示了一种薄片队列微电极微细电火花加工方法及装置,薄片队列微电极包括多个依次队列排列的薄片微电极,在集肤效应的影响下,薄片微电极的加工端面被损耗为外凸弧形;薄片队列微电极微细电火花加工方法包括:通过薄片队列微电极上的薄片微电极依次
3、对工件上与薄片微电极一一相应的位置进行微细电火花加工,在加工面上形成拟合表面。其中薄片队列微电极微细电火花加工方法中充分利用在常规薄片微电极的加工端面的圆角损耗特点,用以有效消除三维微结构表面的台阶效应,从而提高加工后拟合面的精度。消除三维微结构的台阶效应和平面特征拟合表面的圆角放电痕。权利要求书1 .一种薄片队列微电极微细电火花加工方法,所述薄片队列微电极包括多个依次队列排列的薄片微电极,其特征在于,在集肤效应的影响下,所述薄片微电极的加工端面被损耗为外凸弧形;所述薄片队列微电极微细电火花加工方法包括:通过所述薄片队列微电极上的薄片微电极依次对工件上与所述薄片微电极一一相应的位置进行微细电火
4、花加工,在加工面上形成拟合表面:所述通过所述薄片队列微电极上的薄片微电极依次对工件上与所述薄片微电极一一相应的位置进行微细电火花加工,在加工面上形成拟合表面的步骤包括:要使加工后的拟合表面为曲面或斜面时,通过第一薄片微电极沿薄片队列方向对工件进行微细电火花加工,在工件上得到第一个加工曲面;所述第一薄片微电极为第一个用于加工工件的薄片微电极;依次由薄片队列微电极上第一薄片微电极后列的薄片微电极移动至所述工件的后一加工位置,对工件进行微细电火花加工;所述后一加工位置与其前一加工位置的加工曲面平行:所述薄片队列微电极对工件的加工曲面构成拟合表面。2 .根据权利要求1所述的薄片队列微电极微细电火花加工
5、方法,其特征在于,所述通过所述薄片队列微电极上的薄片微电极依次对工件上与所述薄片微电极一一相应的位置进行微细电火花加工,在加工面上形成拟合表面的步骤之后包括:检测所述拟合表面精度是否达到精度阈值,若否,则按照设定增加微细电火花加工的工作电压。3 .根据权利要求1所述的薄片队列微电极微细电火花加工方法,其特征在于,所述通过所述薄片队列微电极上的薄片微电极依次对工件上与所述薄片微电极一一相应的位置进行微细电火花加工,在加工面上形成拟合表面的步骤包括:要使加工后的拟合表面为平面时,通过第一薄片微电极沿薄片队列方向对工件进行微细电火花加工,在工件上得到第一个加工曲面;所述第一薄片微电极为第一个用于加工
6、工件的薄片微电极;所述第一薄片微电极沿所述薄片队列微电极厚度方向做多次往返微细电火花加工;所述第一薄片微电极在其厚度方向的运动行程小于放电间隙;薄片队列微电极上第一薄片微电极后列的薄片微电极按照所述第一薄片微电极的加工流程依次循环加工,得到最终的拟合表面。4 .根据权利要求1所述的薄片队列微电极微细电火花加工方法,其特征在于,所述薄片队列微电极的薄片微电极的厚度为O.1mm。5 .根据权利要求1所述的薄片队列微电极微细电火花加工方法,其特征在于,在所述薄片微电极的放电端面中,其放电部分的厚度为0.08m11b未放电部分的厚度为0.02mmc6 .根据权利要求3所述的薄片队列微电极微细电火花加工
7、方法,其特征在于,所述薄片微电极在其厚度方向的运动行程为0.Olmmo7 .根据权利要求1所述的薄片队列微电极微细电火花加工方法,其特征在于,所述薄片微电极的加工电压为IoOV、放电脉宽为800纳秒且放电脉间为4200纳秒。8 .根据权利要求1所述的薄片队列微电极微细电火花加工方法,其特征在于,所述薄片微电极是铜板、鸨板、鸨铜板、石墨板、锲板、铝板或钢板。9 .一种使用权利要求1所述的薄片队列微电极微细电火花加工方法的加工装置,其特征在于,包括:加工模块,用于通过所述薄片队列微电极上的薄片微电极依次对工件上与所述薄片微电极一一相应的位置进行微细电火花加工,在加工面上形成拟合表面;所述薄片队列微
8、电极包括多个依次队列排列的薄片微电极,在集肤效应的影响下,所述薄片微电极的加工端面被损耗为外凸弧形;所述加工模块包括:第一加工模块,用于要使加工后的拟合表面为曲面或斜面时,通过第一薄片微电极沿薄片队列方向对工件进行微细电火花加工,在工件上得到第一个加工曲面;第二加工模块,用于依次由薄片队列微电极上第一薄片微电极后列的薄片微电极移动至所述工件的后一加工位置,对工件进行微细电火花加工:所述后一加工位置与其前一加工位置的加工曲面平行;所述薄片队列微电极对工件的加工曲面构成拟合表面;第一平面加工模块,用于要使加工后的拟合表面为平面时,通过第一薄片微电极沿薄片队列方向对工件进行微细电火花加工,在工件上得
9、到第一个加工曲面:第一去痕模块,用于所述第一薄片微电极沿所述薄片队列微电极厚度方向做多次往返微细电火花加工;所述薄片微电极在其厚度方向的运动行程小于放电间隙;第二平面加工模块,用于薄片队列微电极上第一薄片微电极后列的薄片微电极按照所述第一薄片微电极的加工流程依次循环加工,得到最终的拟合表面。说明书薄片队列微电极微细电火花加工方法及装置技术领域本发明涉及到电火花加工领域,特别是涉及到一种薄片队列微电极微细电火花加工方法及装置。背景技术现有的将三维微电极离散成若干个薄片队列微电极,并使薄片队列微电极按照规划路径先后进行微细电火花加工方法,可以获得三维微结构。但是在实施的过程中存在以下问题:薄片队列
10、微电极微细电火花加工曲面特征时,获得的三维微结构表面会有台阶,而台阶会对三维微结构的形状精度产生不利影响;薄片队列微电极微细电火花加工平面特征时,平面特征表面会出现圆角放电痕,而圆角放电痕会对平面特征的形状精度产生不利影响。综上所述,为了提高薄片队列微电极微细电火花加工的拟合表面精度,需要将三维微结构表面的台阶效应和平面特征表面的圆角放电痕予以消除。发明内容本发明的主要目的为提供一种消除微结构表面电火花加工产生的台阶效应和圆角放电痕的薄片队列微电极微细电火花加工方法及装置。本发明提出一种薄片队列微电极微细电火花加工方法,薄片队列微电极包括多个依次队列排列的薄片微电极,在集肤效应的影响下,薄片微
11、电极的加工端面被损耗为外凸弧形:薄片队列微电极微细电火花加工方法包括:通过薄片队列微电极上的薄片微电极依次对工件上与薄片微电极一一相应的位置进行微细电火花加工,在加工面上形成拟合表面。进一步地,通过薄片队列微电极上的薄片微电极依次对工件上与薄片微电极一一相应的位置进行微细电火花加工,在加工面上形成拟合表面的步骤之后包括:检测拟合表面精度是否达到精度阈值,若否,则按照设定增加微细电火花加工的工作电压。进一步地,通过薄片队列微电极上的薄片微电极依次对工件上与薄片微电极一一相应的位置进行微细电火花加工,在加工面上形成拟合表面的步骤包括:要使加工后的拟合表面为曲面或斜面时,通过第一薄片微电极沿薄片队列
12、方向对工件进行微细电火花加工,在工件上得到第一个加工曲面;第一薄片微电极为第一个用于加工工件的薄片微电极;依次由薄片队列微电极上第一薄片微电极后列的薄片微电极移动至工件的后一加工位置,对工件进行微细电火花加工;后一加工位置与其前一加工位置的加工曲面平行;薄片队列微电极对工件的加工曲面构成拟合表面。进一步地,通过薄片队列微电极上的薄片微电极依次对工件上与薄片微电极一一相应的位置进行微细电火花加工,在加工面上形成拟合表面的步骤包括:要使加工后的拟合表面为平面时,通过第一薄片微电极沿薄片队列方向对工件进行微细电火花加工,在工件上得到第一个加工曲面;第一薄片微电极为第一个用于加工工件的薄片微电极;第一
13、薄片微电极沿薄片队列微电极厚度方向做多次往返微细电火花加工;第一薄片微电极在其厚度方向的运动行程小于放电间隙;薄片队列微电极上第一薄片微电极后列的薄片微电极按照第一薄片微电极的加工流程依次循环加工,得到最终的拟合表面。进一步地,薄片队列微电极的薄片微电极的厚度为O.1mm。进一步地,在薄片微电极的放电端面中,其放电部分的厚度为008mm,未放电的厚度为0.02mmo进一步地,薄片微电极在其厚度方向的运动行程为0.Olmmo进一步地,薄片微电极的加工电压为100V、放电脉宽为800纳秒且放电脉间为4200纳秒。进一步地,薄片微电极是铜板、鸨板、鸨铜板、石墨板、锲板、钳板或钢板。本发明还揭示了一种
14、薄片队列微电极微细电火花加工装置,包括加工模块;加工模块用于通过薄片队列微电极上的薄片微电极依次对工件上与薄片微电极一一相应的位置进行微细电火花加工,在加工面上形成拟合表面;薄片队列微电极包括多个依次队列排列的薄片微电极,在集肤效应的影响下,薄片微电极的加工端面被损耗为外凸弧形:加工模块包括第一加工模块、第二加工模块、第一平面加工模块、第一去痕模块、第二平面加工模块;第一加工模块用于要使加工后的拟合表面为曲面或斜面时,通过第一薄片微电极沿薄片队列方向对工件进行微细电火花加工,在工件上得到第一个加工曲面;第二加工模块用于依次由薄片队列微电极上第一薄片微电极后列的薄片微电极移动至工件的后一加工位置
15、,对工件进行微细电火花加工;后一加工位置与其前一加工位置的加工曲面平行;薄片队列微电极对工件的加工曲面构成拟合表面;第一平面加工模块用于要使加工后的拟合表面为平面时,通过第一薄片微电极沿薄片队列方向对工件进行微细电火花加工,在工件上得到第一个加工曲面;第一去痕模块用于第一薄片微电极沿薄片队列微电极厚度方向做多次往返微细电火花加工;薄片微电极在其厚度方向的运动行程小于放电间隙;第二平面加工模块用于薄片队列微电极上第一薄片微电极后列的薄片微电极按照第一薄片微电极的加工流程依次循环加工,得到最终的拟合表面。本发明薄片队列微电极微细电火花加工方法及装置,其中薄片队列微电极微细电火花加工方法中充分利用在
16、常规薄片微电极的加工端面的圆角损耗特点,用以有效消除三维微结构表面的台阶效应,从而提高加工后拟合面的精度。有效的消除三维微结构拟合表面的台阶效应和平面特征拟合表面的圆角放电痕。附图说明图1是本发明薄片队列微电极微细电火花加工方法一实施例的步骤示意图;图2是本发明薄片队列微电极微细电火花加工方法另一实施例的步骤示意图;图3是本发明薄片队列微电极微细电火花加工方法又一实施例的步骤示意图;图4是本发明薄片队列微电极微细电火花加工方法第四实施例的步骤示意图;图5是本发明薄片队列微电极微细电火花加工方法一实施例的加工流程示意图;图6是本发明薄片队列微电极微细电火花加工装置一实施例的结构示意图。本发明目的
17、的实现、功能特点及优点将结合实施例,参照附图做进一步说明。具体实施方式应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。参照图1和图5,本发明公示了薄片队列微电极1微细电火花加工方法的一实施例,薄片队列微电极1包括多个依次队列排列的薄片微电极12,在集肤效应的影响下,薄片微电极12的加工端面13被损耗为外凸弧形.参照图1,薄片队列微电极1微细电火花加工方法包括:SK通过薄片队列微电极1上的薄片微电极12依次对工件2上与薄片微电极12一一相应的位置进行微细电火花加工,在加工面上形成拟合表面21o在上述步骤Sl中,固件上的拟合表面21由多个薄片微电极12加工的面组成;由于利用
18、集肤效应影响,薄片微电极12的加工端面13为弧形,相应的,工件2上薄片微电极12加工的面也是弧形,对比过去由多个台阶面构成的拟合表面21,本方法加工的拟合表面21与理想的表面22更接近。参照图2,在步骤Sl之后包括:S2、检测拟合表面21精度是否达到精度阈值,若否,则按照设定增加微细电火花加工的工作电压。在上述步骤S2中,通过仪器检测加工后的拟合表面21的精度,如果精度符合要求,则表示加工正常;下一个产品加工时,继续按照现有的工作参数工作;如果不符合要求,则在下一工件2加工时增加加工电压,在合理的范围内适当增加薄片微电极12加工端面13的圆角损耗,从而提高拟合表面21的精度,直到在调整后的加工
19、电压下可以加工出合格产品;通过上述步骤S3可以确定较佳的加工电压。参照图3,在一些实施例中,步骤SI包括:SlK要使加工后的拟合表面21为曲面或斜面时,通过第一薄片微电极11沿薄片队列方向对工件2进行微细电火花加工,在工件2上得到第一个加工曲面24;第一薄片微电极11为第一个用于加工工件的薄片微电极12;SI2、依次由薄片队列微电极1上第一薄片微电极11后列的薄片微电极12移动至工件2的后一加工位置,对工件2进行微细电火花加工;后一加工位置与其前一加工位置的加工曲面23平行;薄片队列微电极1对工件2的加工曲面23构成拟合表面21o在上述步骤Sll中,由于利用集肤效应影响,第一薄片微电极11的加
20、工端面13为弧形,相应的,工件2上薄片微电极12加工的第一个加工曲面24也是相应的弧形。在上述步骤S12中,薄片队列微电极1上第一薄片微电极11后列的薄片微电极12依次对工件2进行微细电火花加工,同理由于利用集肤效应影响,薄片微电极12的加工端面13为弧形,相应的,工件2上薄片微电极12加工的加工曲面23也是相应的弧形;拟合表面21由薄片微电极12加工的加工曲面23构成,对比过去由多个台阶面构成的拟合表面21,本方法加工的拟合表面21与理想的表面22更接近。参照图4,在另一些实施例中,步骤Sl包括:SI3、要使加工后的拟合表面21为平面时,通过第一薄片微电极11沿薄片队列方向对工件2进行微细电
21、火花加工,在工件2上得到第一个加工曲面24;第一薄片微电极H为第一个用于加工工件的薄片微电极12;Sl4、第一薄片微电极11沿薄片队列微电极1厚度方向做多次往返微细电火花加工;第一薄片微电极11在其厚度方向的运动行程小于放电间隙;Sl5、薄片队列微电极1上第一薄片微电极11后列的薄片微电极12按照第一薄片微电极11的加工流程依次循环加工,得到最终的拟合表面21o在上述步骤S13中,第一薄片微电极11用于加工拟合表面21为平面的工件2,其中第一薄片微电极11由于利用集肤效应影响,第一薄片微电极11的加工端面13为弧形,相应的,工件2上薄片微电极12加工的第一个加工曲面24也是相应的弧形。在上述步
22、骤S14中,第一薄片微电极11沿薄片队列微电极1厚度方向做多次往返微细电火花加工能够,多次往返的第一薄片微电极11,通过微细电火花加工可以有效消除第一薄片微电极11加工对应的加工曲面23时产生的圆角放电痕,使拟合表面21的平面精度更高,更接近理想平面。在上述步骤S15中,薄片队列微电极1上第一薄片微电极11后列的薄片微电极12依次在对应的工件2部位上,重复第一薄片微电极11进行的加工步骤,得到多个加工曲面23,多个加工曲面23构成拟合表面21,拟合表面21接近平面,同理,由于利用集肤效应影响,薄片微电极12的加工端面13为弧形,相应的,工件2上薄片微电极12加工的加工曲面23也是相应的弧形,而
23、且其中的薄片微电极12多次往返,通过微细电火花加工可以有效消除薄片微电极12加工对应的加工曲面23时产生的圆角放电痕,使拟合表面21的平面精度更高,更接近理想平面。参照图5,在本实施例中,薄片队列微电极1的薄片微电极12的厚度为0.1mm;在薄片微电极12的放电端面中,其放电部分的厚度为0.08mm,未放电的厚度为0.02mm;薄片微电极12在其厚度方向的运动行程为0.01mm;薄片微电极12的加工电压为100W放电脉宽为800纳秒且放电脉间为4200纳秒。薄片微电极12可以是铜板、鸽板、铝铜板、石墨板、锲板、钥板或钢板。在本实施例中,薄片微电极12是铝铜板;工件2的材料为304不锈钢,薄片队
24、列微电极1加工的对象是具有45度倾角的拟合表面21,其理想的斜面为平滑的斜面,斜面高度为0.6mm。因为拟合表面21为斜面,所以采用步骤Sll和S12的方法加工。具体为:首先,通过第一薄片微电极11沿薄片队列方向对工件2进行微细电火花加工,在工件2上得到第一个加工曲面24,在薄片微电极12的放电端面中,其放电部分的厚度为0.08mm,未放电的厚度为0.02mm;其次,依次由薄片队列微电极1上第一薄片微电极11后列的薄片微电极12移动至工件2的后一加工位置,对工件2进行微细电火花加工;后一加工位置与其前一加工位置的加工曲面23平行;所有薄片队列微电极1对工件2的加工曲面23共同构成拟合表面21,
25、其中,得到的拟合表面21接近45度倾角且斜面高度为0.6mm的平滑斜面;之后,检测已完成的拟合表面21精度是否达到精度阈值,若否,则按照设定增加微细电火花加工的工作电压为110V,增加幅度为10V,通过增加工作电压在合理的范围内适当增加薄片微电极12加工端面13的圆角损耗,从而提高拟合表面21的精度。通过上述步骤,可以得到在工件2上加工的拟合表面21,并确定当前加工电压是否合适,若己完成的拟合表面21精度达到精度阈值,则,下一个工件2的加工是的工作电压为100Vo参照图6,本发明还揭示了一种薄片队列微电极1微细电火花加工装置,包括加工模块8;加工模块8用于通过薄片队列微电极1上的薄片微电极12
26、依次对工件上与薄片微电极12一相应的位置进行微细电火花加工,在加工面上形成拟合表面21:薄片队列微电极1包括多个依次队列排列的薄片微电极12,在集肤效应的影响下,薄片微电极12的加工端面13被损耗为外凸弧形。加工模块8包括第一加工模块3、第二加工模块4、第一平面加工模块5、第一去痕模块6、第二平面加工模块7;第一加工模块3用于要使加工后的拟合表面21为曲面或斜面时,通过第一薄片微电极H沿薄片队列方向对工件2进行微细电火花加工,在工件2上得到第一个加工曲面24;第二加工模块4用于依次由薄片队列微电极1上第一薄片微电极11后列的薄片微电极12移动至工件2的后一加工位置,对工件2进行微细电火花加工:
27、后一加工位置与其前一加工位置的加工曲面23平行;薄片队列微电极1对工件2的加工曲面23构成拟合表面21;第一平面加工模块5用于要使加工后的拟合表面21为平面时,通过第一薄片微电极11沿薄片队列方向对工件2进行微细电火花加工,在工件2上得到第一个加工曲面24;第一去痕模块6用于第一薄片微电极11沿薄片队列微电极1厚度方向做多次往返微细电火花加工;薄片微电极12在其厚度方向的运动行程小于放电间隙;第二平面加工模块7用于薄片队列微电极1上第一薄片微电极11后列的的薄片微电极12按照第一薄片微电极11的加工流程依次循环加工,得到最终的拟合表面21。本发明薄片队列微电极1微细电火花加工方法及装置,其中薄
28、片队列微电极1微细电火花加工方法中充分利用在常规薄片微电极12的加工端面13的圆角损耗特点,用以有效消除三维微结构表面的台阶效应,从而提高加工后拟合面的精度。有效的消除三维微结构拟合表面21的台阶效应和平面特征拟合表面21的圆角放电痕。以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。说明书附图通过薄片队列微电极上的薄片微电极依次对工件上与薄片微电极一一相应的位置进行微细电火花加工,在加工面上形成拟合表面通过薄片队列微电极上的薄片微电极依次对工件hH薄片微电极相应的位宜进行微细电火花加工,在加工面上形成拟合表面X检测拟合表面精度是否达到精度阈值,若否,则按照设定增加微细电火花加匚的1:作电压要使加工后的拟合表面为曲面或斜面时,通过第薄片微电极沿薄片队列方向对工件进行微细电火花加工,在工件上得到第个加工曲面Sll依次由薄片队列微电极上第一薄片微电极后列的薄片微电极移动至工件的后加工位置,对工件进行微细电火花加I.:,后加I:位置与其前一加工位置的加工曲面平行:薄片队列微电极对工件的加工曲面构成拟合表面检测拟合表面精度是否达到精度阈值,若否,则按照设定增加微细电火花加工的工作电压加工模块