抗性淀粉制备技术研究.doc

上传人:夺命阿水 文档编号:7517 上传时间:2022-06-21 格式:DOC 页数:18 大小:149KB
返回 下载 相关 举报
抗性淀粉制备技术研究.doc_第1页
第1页 / 共18页
抗性淀粉制备技术研究.doc_第2页
第2页 / 共18页
抗性淀粉制备技术研究.doc_第3页
第3页 / 共18页
抗性淀粉制备技术研究.doc_第4页
第4页 / 共18页
抗性淀粉制备技术研究.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《抗性淀粉制备技术研究.doc》由会员分享,可在线阅读,更多相关《抗性淀粉制备技术研究.doc(18页珍藏版)》请在课桌文档上搜索。

1、 . . 学 院毕业论文题目名称: 抗性淀粉制备技术的研究院 系:专 业: 学生:学 号: 指导教师:毕业论文原创性声明本人重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名: 年 月 日抗性淀粉制备技术的研究摘 要:利用玉米淀粉制备抗性淀粉(Resistant Starch,简称RS),采用压热法制备抗性淀粉的适宜条件是淀粉浓度为30%,温度为121,加热时间为2

2、0min,pH为8.0,4下放置24 h,抗性淀粉的得率可达到9.8。并初步研究了玉米抗性淀粉的性质包括热特性、碘吸收曲线等。关键词:玉米淀粉;抗性淀粉;压热The preparation of the technology of resistant starchAbstract:Using corn Starch preparation of Resistant Starch (Resistant Starch, hereinafter referred to as RS), the pressure of Resistant Starch prepared hot legal system

3、 suitable conditions of Starch content is 30%, the temperature of 121 , the heating time is 20 min, pH 8.0, 4 next 24 h, of Resistant Starch rate can reach 9.8%. And the preliminary research on the corn of resistant starch properties including thermal characteristic, iodine absorption curve, etc. Ke

4、ywords:Corn starch;Resistant starch; Pressure hot 目 录1 前言(1)1.1 抗性淀粉的概述(1) 1.2 抗性淀粉的功效与应用(2)1.3 抗性淀粉研究展望(3)2 实验材料(4)2.1 原料(4)2.2设备(4)3 实验方法(4)3.1试剂的制备(4)3.2方法(4)4 实验结果与讨论(6) 4.1葡萄糖标准曲线(6)4.2 RS抗酶解性测定(7)4.3 RS吸湿性测定(7)4.4 RS碘吸收曲线的测定(7)4.5 浓度与吸光值(8)4.6 温度与吸光值(8)4.7 压热时间与吸光值(9) 4.8 ph与吸光值(9)4.9 正交试验(10)

5、5结论(10)参考文献(12)致(13)12 / 181 前言1.1 抗性淀粉的概述抗性淀粉又称抗酶解淀粉与难消化淀粉,这种淀粉较其他淀粉难降解,在体消化缓慢,吸收和进入血液都较缓慢。抗性淀粉本身仍然是淀粉,其化学结构不同于纤维,但其性质类似溶解性纤维一般将其分为四类:即RS、RS、RS、RS。RS:物理包埋淀粉,指那些因细胞壁的屏障作用或蛋白质的隔离作用而不能被淀粉酶接近的淀粉。如部分研磨的谷物和豆类中,一些淀粉被裹在细胞壁里,在水中不能充分膨胀和分散,不能被淀粉酶接近,因此不能被消化。但是在加工和咀嚼之后,往往变得可以消化。RS:抗性淀粉颗粒,指那些天然具有抗消化性的淀粉。主要存在于生的马

6、铃薯、香蕉和高直链玉米淀粉中。其抗酶解的原因是具有致密的结构和部分结晶结构,其抗性随着糊化完成而消失.根据X射线衍射图像的类型,RS可分为三类。A类:这类淀粉即使未经加热处理也能消化,但在小肠中只能部分被消化,主要包括小麦、玉米等禾谷类淀粉;B类:这类淀粉即使经加热处理也难以消化,包括未成熟的香蕉、芋类和高直链玉米淀粉;C类:衍射的类型介于A类和B类之间,主要是豆类淀粉。RS:回生淀粉指糊化后在冷却或储存过程中结晶而难以被淀粉酶分解的淀粉,也称为老化淀粉。它是抗性淀粉的重要成分,通过食品加工引起淀粉化学结构、聚合度和晶体构象方面等的变化形成,因而也是重要的一类抗性淀粉。回生淀粉是膳食中抗性淀粉

7、的主要成分,这类淀粉即使经加热处理,也难以被淀粉酶类消化,因此可作为食品添加剂使用。一般采用湿热处理制备,如直连含量为70%的玉米淀粉,经过压热法处理,可获得21.2%的RS的产品。国外专利中多采用高直链的玉米淀粉为原料,将将脱支酶作为主要手段,结合不同干燥方式制备高抗性淀粉含量的产品。RS:化学改性淀粉(ChemicallyModifiedStarch)主要指经过物理或化学变性后,由于淀粉分子结构的改变以与一些化学官能团的引入而产生的抗酶解淀粉部分,如羧甲基淀粉、交联淀粉等。同时,也指种植过程中,基因改造引起的淀粉分子结构变化,如基因改造或化学方法引起的分子结构变化而产生的抗酶解淀粉部分1。

8、由于RS和RS在加热和加工的过程中会损失掉大部分,国外研究人员目前最感兴趣的还是RS和RS,可以将它们添加到食品中,提高食品的功能性。RS和 RS是天然淀粉但在食品加工结冻会失去潜在的抗性。 RS,通过高压灭菌和冷却循环形成的淀粉,加热超过100时也能保持稳定,因为老化淀粉(直链淀粉)在155熔化。因此RS是加工食品中的主要类型,并已被许多研究人员研究。当淀粉分散加热,直链淀粉是淀粉溶和凝胶形成。冷却后,凝胶经历变构导致部分晶体结构。在此回生过程中直链淀粉重新关联形成强大的结晶,老化淀粉(RS)从而形成。RS的特点是呈B型X射线衍射模式J,在30170围有吸热。分子结构分析显示,酶抗性回生淀粉

9、主要是由D型葡萄糖通过糖苷键连接而成,具有一定的链长围。1984年Jane和Robyt提出了双螺旋结构的假说,认为直链淀粉形成的双螺旋晶态提供了回生淀粉的抗酶解性,其实质为抗性淀粉中起主要作用的直链淀粉结晶体,分子量为400012000u,而玉米淀粉的平均分子量为140000u左右,所以对玉米淀粉进行适度的降解将有利于直链淀粉的结晶,从而提高抗性淀粉的得率。与原淀粉相比,与酸处理后淀粉的糊化更容易被水解。支链淀粉可能是酸水解淀粉形成,像线性淀粉分子。因此用酸处理老化淀粉将导致RS产量增加2。1.2抗性淀粉功效与应用1.2.1功效抗性淀粉类似膳食纤维的作用。抗性淀粉被认为属于膳食纤维的一种。膳食

10、纤维是指能抗人体小肠消化吸收,而在人体大肠能部分或全部发酵的可食用的植物性成分、碳水化合物与其相类似物质的总和。膳食纤维具有润肠通便、调节控制血糖浓度、降血脂等一种或多种生理功能。抗性淀粉对人体产生作用,主要是通过影响其他物质的吸收代,以与在结肠发酵产生的次生产物而发挥其生理功能。降脂减肥作用。抗消化淀粉能减少脂质吸收与脂肪酸合成,有效降低血中与肝脏脂质量,预防脂肪肝形成。因此它可作为减肥保健食品添加剂。抗性淀粉所产生的热量约只有糖类的一半,可用于控制食欲与巨量营养素的平衡,进而达到体重的控制。对肠道疾病的防治作用。抗性淀粉不被消化,进入结肠,作为结肠菌群的营养源,这些微生物通过发酵,将碳水化

11、合物代后生成丁酸等短链脂肪。降低结肠与粪便的pH,丁酸具有促进结肠健康,减少胺类致癌物的产生,抑制肿癌细胞。减少肠黏膜细胞的增生,进而降低患结肠癌危险。肠道的大肠杆菌还能合成泛酸、尼克酸、核黄素等人体不可缺少的生命物质,增加人体所需营养。未降解的抗性淀粉还可增加粪便通量,加速有毒物质的排出,防治便秘和痔疮与肛门直肠疾病。1.2.2应用RS可作为优良的膳食纤维营养强化剂。目前,国外已将RS作为食品配料或膳食纤维的强化剂,应用到面类食品中,最引人注目的是抗性淀粉在面包中的应用。添加抗性淀粉的面包,不仅膳食纤维含量提高了,而且在气孔结构、体积和颜色等感官品质方面均好于添加其他传统膳食纤维的面包。在面

12、包中添加抗性淀粉将有益于人们的健康。 RS可提高食品的膨化系数。RS可提高挤压谷物和小吃食品的膨化系数,提高谷物的耐泡性。如添加燕麦纤维的产品硬度大,脆性小,总体品质较差。而含RS的燕麦食品膨化体积增大,而且RS比例越高膨化系数越高。这表明添加RS可改善挤压食品的膨化情况,减少其他纤维对食品膨化的负面影响。同时添加RS的膨化食品浸泡到牛奶等饮料中食用时,其质地虽变软但不会因吸水而崩溃,使谷物在浸泡中保持松脆3。 RS作为食品增稠剂,具有较好的黏度。抗性淀粉因具有良好的流变特性、稳定性与低持水性,可以作为食品增稠剂使用。将RS、天然糯性谷物淀粉与变性淀粉分别添加到调味汁中,于90蒸煮15 min

13、,结果显示添加RS的制品稠度较好。又因RS为不溶于水的物质。在黏稠不透明的饮料中可用RS来增加饮料的不透明度与悬浮度,它不会产生砂砾感,也不会掩盖饮料的风味。改善脆性食品级微胶囊的包衣。Dimantov等用高直链淀粉玉米淀粉经流化床工艺制得食品级微胶囊的包衣(壁材),分散性能稳定但会被胰淀粉酶全部酶解。提高包衣稠度可使抗酶解稳定性有所提高。加入RS可进一步让包衣的抗酶解能力提高2.1,但是包衣表面出现裂纹。研究认为,应进一步解决裂纹问题,RS与高直链淀粉玉米淀粉的组合作为微胶囊包衣材料很有发展前途。辅助治疗。应用于霍乱引起严重营养不良与腹泻儿童口服补水治疗的辅助剂,不影响肠道粘膜的恢复4。1.

14、3抗性淀粉的研究展望国外关于RS的研究已经系统化,国研究也日渐活跃。目前,对RS的生产、分析测定与RS的生理功能均作了广泛研究,但尚不完善,还需进一步深入。在RS的分类上,还需进一步弄清RS结构,并对RS进行细分,比如明确不同来源的同类RS的差异与生理功能。在RS的生产上,还需进一步完善工艺,降低成本,提高RS产品在食用、加工过程中抗性性能的稳定性。在RS的分析测定上,还需进一步完善测定方法。食物中RS含量目前尚无统一、稳定的标准测定方法,并影响到准确估计人体的摄人情况5。目前对人体RS摄人量的估计存在一个较大的围,从4 gd到2030 gd,后者是按每人每日淀粉摄人量200300 g估计的。

15、有调查表明,欧洲人RS的摄人量为23 gd ,而Kontraszti等的研究发现由于无法排除残留物中542的未知杂质,推测目前的数据可能低估了欧洲人群的实际摄人量。Brighenti 则测得意大利人RS摄人量为7292 gd,平均85 gd。因此准确测定食物中实际发生作用的RS,从而估计人体RS摄人水平仍然是进一步研究的重点6。2 实验材料2.1 原料普通玉米淀粉、耐热淀粉酶、糖化酶、3,5二硝基水酸、氢氧化钾、盐酸、丙三酮、乙酸、磷酸二氢钠、DMS0(二甲基亚砜)、葡萄糖、浓硫酸、无水乙醇、氢氧化钠、碘、碘化钾。容量瓶、烧杯、锥形瓶、滴管等玻璃仪器、筛子。2.2 设备电热鼓风干燥箱(GZX

16、9140 MBE)、电子天平、电热恒温水浴锅(DZKW)ph计、搅拌机、海尔冰箱、恒温培养箱、离心机(LG 10)、立式电热压力蒸汽灭菌器(LSZX 50KB)、722S可见分光光度计。3 实验方法3.1 试剂的制备(1) 1 mgmL 葡萄糖标准液:准确称取1 g的无水葡萄糖,待溶解后定容至1000 mL7。(2) DNS显色液:准确称取无水的3,5二硝基水酸6.5 g溶解待用,无水氢氧化钠40 g溶解后移入500 mL容量瓶,冷却后定容,将水酸溶解液移入1000 mL容量瓶并加入325 mL的氢氧化钠,再加入15 mL丙三醇溶解定容至1000 mL贮存于棕色试剂瓶中,以上试剂均为分析纯,水

17、为蒸馏水11。(3) 2M KOH溶液:准确称取11.2g氢氧化钾,待溶解后定容至100 mL。(4) 高温耐热淀粉酶、糖化酶酶活的测定采用碘量法,两种酶液的配置:分别两种酶取1g,溶解后过滤到100mL的容量瓶中,转移到试剂瓶中保存到4的冰箱中。比活分别是190 u/ml 、630 u/ml8。3.2 方法3.2.1 RS 的分离提纯RS 的分离提纯工艺:调淀粉乳调pH加热预糊化压热处理冷却室温4摄氏度放置24h得到淀粉凝胶搅拌剪切调pH 值7.0 加入耐高温- 淀粉酶(90, 水浴30min , 不断搅拌) 冷却调pH 值至4.5 加入葡萄糖淀粉酶(60, 24 h) 冷却反复离心(3 0

18、00 r/ min , 20 min) 弃上清液加入2 mol/ L KOH 溶液充分溶解调pH 值至7.0 加入耐高温- 淀粉酶(90, 水浴30min , 不断搅拌) 冷却调pH 值至4.5 加入葡萄糖淀粉酶(60, 水浴1h)冷却水洗反复离心收集上清液定容至100 mL采用DNS比色法测定还原糖结果乘以0.99。RS 的分离操作要点:调酸度时要将淀粉混匀后,pH计放入溶液后玻璃棒搅拌下读的稳定数据为准。而且pH计在使用以前要校准:选择setup按钮,然后分别将试笔放入两种标准液,仪器会校准到准确读数;因为酸度、压热温度,时间、淀粉浓度是实验探究的因素,所以在做单因素试验时要保持其他条件不

19、变,尽量保持一样条件;预糊化是在80条件下搅拌8 min,压热处理以前要用塑料薄膜封住锥形瓶瓶口,以防质量的变化;取淀粉凝胶10 g与烧杯中再加8 ml的蒸馏水,用搅拌机搅拌20 min;耐高温- 淀粉酶、葡萄糖淀粉酶液分别加2 ml、3 ml,第二次再加的两都是1 ml;离心底部残留絮状团即为样品中的RS,用含水的IMS或乙醇(50%)洗涤絮状团,洗涤后离心,再重复一次洗涤离心,收集离心后获得的絮状物,加KOH液5 ml溶解;准确从容量瓶中取l mL样液加入到50 mL的容量瓶中,加3.5 mL的DNS在沸水浴中煮5 min后流水迅速冷却,定容摇匀,空白调零。20 min后在520 nm的吸

20、收光谱波长下测定吸光值。3.2.2 葡萄糖标准曲线的测定准确取l、3、5、8、10、12 mL的葡萄糖标准液分别加入到50 mL的容量瓶中,各加5 mL的DNS在沸水浴中煮5 min后流水迅速冷却20 min,定容摇匀,空白调零。后在所确定的520nm吸收光谱波长下测定吸光值。3.2.3 RS 抗酶解性的测定称取RS样品5 g , 配成10%水溶液, 加入足量的耐高温- 淀粉酶, 将样品置于90 的恒温水浴振荡器中(搅拌), 在不同时间测定溶液的还原糖含量。3.2.4 RS与淀粉吸湿性测定淀粉样品过100目筛, 干燥, 与RS准确称量后, 置于干燥的称量瓶中, 使之平铺均匀, 然后放入底部含有

21、蒸馏水的干燥器中, 密闭后转移至35的恒温培养箱, 50 h后再次称量, 重复3次取平均值, 计算吸湿量。3.2.5 RS碘吸收曲线的测定精确称取50 mg玉米抗性淀粉于50 mL容量瓶中,加入90DMS0溶液10mL,于60 水浴中分散10 min,迅速冷却,用水定容至50 mL。取2 mL于100 mL容量瓶,加入50 mL水与1 mL碘试剂,定容,立即混匀,显色10 min,在波长为400800 nm 的围进行可见光谱扫描。3.2.6 浓度与浓度与吸光值分别配置浓度为15、20、25、30的淀粉溶液,在同样条件下测定吸光值。3.2.7 温度与吸光值称取RS 样品5 g,配成10%水溶液,

22、将样品溶液加热,随着温度的升高测定样品溶液的吸光值。3.2.8 压热时间与吸光值称取RS 样品5 g,配成10%水溶液,将样品溶液压热,测出不同时间样品溶液的吸光值。3.2.9 pH与吸光值称取RS 样品5 g,配成10%水溶液,先往样品溶液里加碱,再逐渐加酸,测出不同pH值样品溶液的吸光值。4 实验结果与讨论4.1 葡萄糖标准曲线y = 0.2608x + 0.4539R2 = 0.99900.511.522.50.020.060.10.160.20.24还原糖(g/l)吸光值图1葡萄糖标准曲线由图1所得的标准曲线与其回归曲线方程就可以通过实验测得的吸光值计算出还原糖的量,从而换算出淀粉或R

23、S的量,且根据曲线得出吸光值与RS产率的正比关系,从而在下面讨论RS产率高低时可直接使用吸光值来说明,简化实验。4.2 RS抗酶解性测定表1 RS的抗酶解性时间(min)61224糖含量0.11.11.3由表1可知, RS 样品经足量的耐高温- 淀粉酶90 酶解6h , 淀粉溶液中很少还原糖测出。酶解12 h后,溶液中还原糖含量为1.1 % , 酶解24 h 后, 溶液中还原糖量无明显增加。说明压热工艺所制备的RS样品具有较强的抗酶解性, 耐高温- 淀粉酶很难将其水解。4.3 RS吸湿性测定表2原淀粉与RS吸湿性原淀粉(%)RS(%)吸水前质量(m)1.0211.294吸水后质量(m)1.18

24、11.695质量差0.160.401吸水率(%)15.730.1由表2可知, RS样品的吸水率为30.1% , 明显高于原淀粉的15.7%。这可能是因为制备RS的过程中, 压热处理和低温静置使RS颗粒的结构与原淀粉相比已经发生了较大的变化, 改善了其对水分的吸附能力。RS良好的吸水特性使其在添加到焙烤食品、饮料中时不会对食品的口感产生不良影响。4.4 RS碘吸收曲线的测定直链淀粉的最大吸收峰在600640 nm,支链淀粉的最大吸收峰在520560 nm。00.050.10.150.2400450500550600650700750800波长(nm)吸光值图2波长与吸光值玉米抗性淀粉的碘吸收曲线

25、如图2所示,最大吸收峰在560600 nm 之间,位于直链淀粉与支链淀粉之间。由于组成抗性淀粉的直链淀粉聚合度较小,碘的颜色反应呈紫红色,所以它的最大吸收峰由直链淀粉处向支链淀粉处偏移。4.5 浓度与吸光值00.511.515202530淀粉浓度吸光值图3浓度与吸光值从图3中看出,淀粉乳浓度过高或过低,都不利于抗性淀粉的形成。当淀粉乳浓度在25左右时,RS的产率最高。分析认为,淀粉乳浓度过高,淀粉粒难以充分膨胀,而且淀粉糊黏度很大,不利于直链淀粉分子相互接近、形成双螺旋和结晶。淀粉乳浓度过低,直链淀粉分子相互接近概率减少,也不利于RS的形成。浓度在2030为较好制备条件,以此进行正交试验。4.

26、6 温度与吸光值0.911.11.2110115121125温度()吸光值图4温度与吸光值从图4中看出,RS得率随着温度升高而增加,最初阶段增量明显,随着温度继续升高增加趋于平缓。温度低于110时得率很低,当温度达到120以上,几乎所有淀粉分子均从淀粉粒中游离出来。由于125左右RS得率减少且温度偏高,故选取115、121、125进行正交试验。4.7 压热时间与吸光值吸光值0.9511.051.11.151.21.251.315203040加热时间(min)吸光值图5压热时间与吸光值从图5中看出,随着压热时间增加RS得率增加。压热时间低于15 min时RS得率较低,这可能是因为淀粉分子中的直链

27、淀粉分子尚未完全游离出来,不利于直链淀粉分子间相互接近;当压热时间超过40 min后RS得率反而下降,这可能是因为淀粉分子发生过度降解,因而不利于抗性淀粉的形成。压热时间30 min左右时,RS浓的产率最高。以此为依据选取20、30、40 min进行正交试验。4.8 pH 与吸光值吸光值1.1251.131.1351.141.145678pH吸光值图6 pH与吸光值从表6中看出,RS得率随着PH而增加,最初阶段增量明显,随着继续升高增加趋于降低。恰选三个pH值作图出现波峰,故选取6.0、7.0、8.0进行正交试验。4.9 正交试验在预备试验的基础上, 采用正交试验确定抗性淀粉的制备工艺。正交试

28、验因素水平设计见表3 ,试验方案与结果分析见表4。表3 压热正交因素表水平淀粉浓度A(%)压热温度B()压热时间C(min)pHD固定因素E120115206.01225121307.01330125408.01表4 压热正交表因素淀粉浓度 A加热温度() B加热时间(min) CpHD还原糖量(g/l)实验120%115206.02.85实验220%121307.03.00实验320%125408.03.07实验425%115308.03.53实验525%121406.04.54实验625%125207.01.95实验730%115407.03.52实验830%121208.04.7实验93

29、0%125306.04.23K12.9733.3003.1673.873K23.3404.0803.5872.823K34.1503.0833.7103.767R1.1770.9970.5431.050由表4可知, 本试验所得RS含量最高可达到9.8%。由极差分析可得影响抗性淀粉产率的各因素主次为:A(淀粉乳浓度) D(pH 值) B(压热温度) C (压热时间) , 最优因素水平组合为A3、B2、C1、D3 , 即淀粉乳浓度30% , 反应温度121, 反应时间20 min , 淀粉乳pH 值8.0 。经验证试验, 采用此工艺参数所制备的抗性淀粉产率为9.8%。5 结论从玉米淀粉中制备抗性淀

30、粉方法有压热法、螺杆挤压法、微波辐射法、脱支法,而RS的测定方法很多,但基本原理一致,都是利用RS的抗酶解性和RS能溶解于KOH或DMSO溶液而能重新被淀粉酶作用的性质。本实验采用压热法制备抗性淀粉,目的就是通过正交试验, 确定压热法制备抗性淀粉时影响抗性淀粉产率的各因素的主次,为:淀粉乳浓度 pH值 压热温度 压热时间, 制备抗性淀粉的最佳条件为:淀粉乳浓度30% ,压热温度121 , 压热时间20 min ,pH值8。除了本文探讨的压热温度、压热时间、淀粉浓度、pH四因素外,还有很多工艺因素和过程影响抗性淀粉的产量如压热冷却循环次数、酸种类、水解时间从实验结果来看抗性淀粉具有较强的抗酶解能

31、力, 耐高温- 淀粉酶很难将其水解;与原淀粉相比, 抗性淀粉的吸水性显著提高;碘吸收曲线的最大吸收峰在560600 nm 之间。参考文献1 朱鹏,新华,爱华.玉米抗性淀粉的制备与其性质的研究J,粮油加工与食品机械, 2005(5):7982. 2 新华,静涛,钟彦,黎斌.玉米抗性淀粉制备工艺的优化研究J,食品科学.2008(06) :186-189.学,2008(06) :186189.3 守文,孟庆虹,春华,凯.玉米抗性淀粉的结构和性质研究J,食品工业科技,2006(06): 6467.4 凯,守文,春华,方桂珍.玉米抗性淀粉提取过程中的影响因素研究J,化学世界, 2005(07):4154

32、195 艳,周丽娜,英楠,闵伟红.高直链玉米抗性淀粉制备工艺的优化研究J,农业科学,2009(35):17689176926 新华,静涛.抗性淀粉工业化生产工艺的优化研究J,食品工技,2008(03): 205-2097 翟爱华,洪微,王宪青.酶解法制备玉米抗性淀粉的研究J,八一农垦大学学报,2008(06): 48528 北珂,守文.不同降解方法对抗性淀粉得率与分子量的影响J,粮食与饲料工业,2007(12): 16199 朱海霞,石瑛,庆娜.DNS比色法测定马铃薯还原糖含量的研究J, 2005(3):26 6270.致在此论文撰写过程中,要特别感我的导师教授的指导与督促,同时感她的谅解与包容。没有老师的帮助也就没有今天的这篇论文。求学历程是艰苦的,但又是快乐的。感我的班主任老师,他为我们全班所做的一切,他不求回报,无私奉献的精神很让我感动,再次向他表示由衷的感。在这四年的学期中结识的各位生活和学习上的挚友让我得到了人生最大的一笔财富。在此,也对他们表示衷心感。我的父母,没有他们辛勤的付出也就没有我的今天,在这一刻,将最崇高的敬意献给我的父母!本文参考了大量的文献资料,在此,向各学术界的前辈们致敬!

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号