《MR常用序列成像基本原理.ppt》由会员分享,可在线阅读,更多相关《MR常用序列成像基本原理.ppt(41页珍藏版)》请在课桌文档上搜索。
1、磁共振成像MRI(Magnetic Resonance Imaging),常用序列及成像基本原理,主要内容,简要介绍磁共振成像基本原理及概念磁共振常用检查方法及临床应用如何阅读磁共振图像结合实际阅读病例图像,X线源 体外放射源(核素)声能 磁场 微电子技术 计算机技术,医学影像学各种技术涉及:,当今的医学影像学内容包括:传统X线诊断学透视 照相(普通摄影、体层摄影)造影计算X线摄影(computed radiography,CR)数字X线摄影(Digital radiography,DR)X线CT(computed Tomography,CT)数字减影血管造影(Digital Subtract
2、ion Angiography,DSA)介入放射学(interventional radiology)超声成像(Ultrasonic Imaging),发射型计算断(体)层摄影(Emission computed Tomography,ECT)正电子发射型计算断(体)层摄影(PositronEmission computed Tomography,PET)单光子发射型计算断(体)层摄影(Singlephoton Emission computed Tomography,SPECT)磁共振成像(Magnetic Resonance Imaging,MRI)分子影像学(Molecular Imag
3、ing)21世纪最前沿课题 技术:PET或PET-CT、MR、CT、光学成像(生物发光、荧光)信息放射学系统(radiology information system)图像存档与传输系统(Picture Archiving and Communication System,PACS)影像科管理、quality control,QC、quality assurance,QA.,全新的医学影像学在医学领域的应用包括:影像诊断学:X线、CT、DSA、MRI、US、ECT等。影像介入性治疗学:DSA、超声、CT、MR等。信息放射学:影像学工作管理、质控;影像 的传输与存储(PACS)存储、传输、远程会
4、诊(远程放射学 teleradiology),1946 发现磁共振现象 Bloch Purcell 1971 发现肿瘤的T1、T2时间长 Damadian 1973 做出两个充水试管MR图像 Lauterbur 1974 活鼠的MR图像 Lauterbur等 1976 人体胸部的MR图像 Damadian 1977 初期的全身MR图像 Mallard 1980 磁共振装置商品化 2003 诺贝尔奖金 Lauterbur Mansfierd,时间,发生事件,作者或公司,磁共振发展史,磁共振成像的原理,实现人体磁共振成像的条件:,人体内氢原子核 H+作为磁共振中的靶子,它是人体内最多的物质。H核只
5、含一个质子不含中子,最不稳定,最易受外加磁场的影响而发生磁共振现象有一个稳定的 静磁场(磁体):常导型、永磁型、超导型。0.153.0T梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等,人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消,按照单一核子进动原理,质子群在静磁场中形成的宏观磁化矢量M,z,M,y,x,进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础,
6、Z,Z,Y,Y,X,B0,X,MZ,MXY,A:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量 Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面,A,B,C,在这一过程中,产生能量,B0,Z,Z,Z,Z,Z,Y,Y,Y,Y,Y,X,X,X,X,X,90度,(3)(5)该过程称弛豫(relaxation),即将能量(MR信号)释放出来。整个弛豫过程实际上是磁化矢量在横轴上缩短(横向或T2弛豫),和纵轴上延长(纵向或T1弛豫)。而人体各类组织均有特定T1、T2值,这些值之间的差异形成信号对比,(1)静磁场中,(2)90度脉
7、冲,(3)脉冲停止后,(4)停止后一定时间,(5)恢复到平衡状态,人体进入磁场磁化施加射频脉冲、H核磁矩发生90。偏转,产 生能量射频脉冲停止、弛豫过程开始,释放所产生的能量(形成MR信 号)信号接收系统计算机系统 在弛豫过程中,即释放能量(形成MR信号),涉及到2个时间常数:纵向 弛豫时间常数T1;横向弛豫时间常数T2 加权(weighted)的概念:MR成像过程中,T1、T2弛豫二者同时存在,只是在某一时间内所占的比重不同。如果选择突出纵向(T1)弛豫特征的 扫描参数(脉冲重复时间和回波时间,以毫秒计)用来采集图像,即可得 到以 T1弛豫为主的图像,当然其中仍有少量T2弛豫成分,因是以T1
8、 弛豫 为主,故称为T1加权像(weighted Imaging WI)。如果选择突出横向(T2)弛豫特征的扫描参数采集图像 加权或称权重,有侧重、为主的意思 因为人体各种组织如肌肉、脂肪、体液等,各自都具有不同的T1和T2弛豫 时间值,所以形成的信号强度各异,因此可得到黑白不同灰度的图像,磁共振常规检查图像的特点,层面成像、成像参数多、任意多方位直接成像、血管流空效应,人 体 不 同 组 织 的 MR 信 号 特 点,黑白灰度对比:X光片、CT均以密度高低为特征 MR图象是以信号高低/强弱为特征水:长T1(黑)、长T2(白)骨皮质、完全性的钙化:黑(无信号)脂肪:短T1(白)、短T2(暗灰)
9、血流:常规扫描为流空(黑)肌肉:长T1(黑)、短T2(黑)大多数肿瘤:长T1、长T2 黑色素瘤:短T1、短T2,磁 共 振 成 像 检 查 方 法,普通检查 T1WI、T2WI、FLAIR、FS_T2WI水成像 MRM MRCP MRU血管成像 MRA MRV功能成像 PWI DWI DTI强化扫描 GD_DTPA,MR检查方法,普通检查:采用不同脉冲序列、不同方位,对病变部位进行扫描(包括脂肪或水抑制)。,FLAIR(Fluid Attenuated Inversion Recovery)抑制水的重度T2加权像,也称黑水技术。即抑制自由水,如脑脊液,对邻近脑脊液病变的显示更有利。,增强检查:
10、静脉内注射造影剂进行扫描,用于鉴别诊断等。MR所用造影剂与CT的造影剂不同,除不是碘剂不存在过敏之外,其作用的原理也不同。,MR造影剂(顺磁性物质)是改变病变部位磁环境,缩短H质子的T1、T2弛豫(但T2的缩短不如T1明显)造影剂入血行病变组织间隙 与病变组织大分子结合T1驰豫接近脂肪或Larmor频率T1缩短强化(白),(称间接增强)影响因素:病变区的血流;灌注;血脑屏障。与血液内的药浓度不绝对成正比,达一定浓度后不起作用。,直接提高病变区X线衰减值(称直接增强),CT造影剂(碘制剂),血管丰富程度 血流灌注如何 血液内碘浓度高低 血脑屏障完整与否,脑膜瘤?术后两年小脑多发病灶,特殊检查:,
11、血管成像(Magnetic Resonance Angiography MRA)利用流动的血液进行血流的直接成像 可用于动脉或静脉的检查,若同时使用造影剂,称增强血管成像(CE-MRA)。血管成像用于血管畸形、动脉瘤、血管狭窄或闭塞。但目前仍不能代替DSA。特点:简便、无创伤,流空效应示意图,水成像,胆道成像(Magnetic Resonance Cholangio-pancreatography)MRCP 不使用造影剂,利用胆汁(水)进行成像。用于胆道梗阻检查。,尿路成像(Magnetic Resonance Urography)MRU 不使用造影剂,利用尿液进行成像。,硬膜囊成像(Magn
12、etic Resonance Myelography)MRM 不使用造影剂,利用脑脊液进行成像。,内耳膜迷路成像(Magnetic Resonance Labyrinthography)MRL 不使用造影剂利用迷路内的淋巴液进行成像。,功能MR成像(fMRI):1、灌注加权成像(Perfusion-Weighted Imaging)PWI包括外源性和内源性。2、弥散加权成像(Diffusion-Weighted Imaging)DWI3、扩散张量成像(Diffusion Tensor Imaging)DTI 4、MR波谱分析(Magnetic Resonancespectroscopy)MRS
13、,神经元兴奋区兴奋性,兴奋区静脉血中氧和血红蛋白相对,去氧血红蛋白相对,去氧血红蛋白的顺磁作用,可使T2*信号,由于去氧血红蛋白的减少,神经元兴奋区信号相对,内源性PWI称血氧水平依赖法(BOLD)简单原理,外源性灌注加权成像PWI:用超快速MR扫描技术,进行造影剂跟踪,显示造影剂首次通过的组织血流灌注情况并依需要作延迟增强(常用于脑、心肌的检查),弥散加权成像DWI:是以MR流动效应为基础的成像方法。与MRA不同的是:MRA观察的是宏观的血流现象,而DWI观察的是微观的水分子流动扩散现象,脑发生缺血时,PWI先有异常,出在6小时内(超急期),此时溶栓治疗,疗效最佳;若出现DWI异常时,则易出
14、血;若T2WI出现病灶时,则为不可逆的。PWI-DWI-T2WI,脑弥散加权成像(DWI)是使用一对大小相等、方向相反的扩散敏感梯度场。该梯度场对静止组织作用的总和为零,但水分子在不断扩散,受该梯度场影响而产生相位变化。梗死区域水含量增加,其早期细胞毒性水肿使水分子扩散下降,而在产生T2信号改变之前,在DWI显示出早期的脑梗死。,理解弥散成像的原理,细胞正常,水分子游动自由。,细胞毒性水肿时,较多的细胞外液进入细胞内,使细胞内、外水分子游动缓慢,胞,细,水,子,分,磁共振扩散张量成像(MR-DTI)技术是近年来在MR-DWI基础上发展起来的成像及后处理技术,它利用组织中水分子的自由热运动的各向
15、异性的原理,探测组织的微观结构,达到研究人体功能的目的。目前,DTI是唯一可在活体显示脑白质纤维束的无创性成像方法。,磁共振波谱(MRS):研究人体能量代谢病生理改变。通过显示组织生化学波谱,发现病变,这种生化代谢异常更早于病理形态学异常。MRI+MRS=诊断,更敏感、更早期、更特异,MRS是一种化学位移技术。均匀磁场中,同种元素的同一种原子由于其化学结构差异,拉莫尔频率也不相同,这种频率差异称化学位移 MRS实际是某种原子的化学位移分布图。横轴:化学位移,纵轴:各种具有不同化学位移原子的相对含量,怎样阅读常规检查的MR图像,1、核对申请单,熟悉图像上的常用标记:姓名、年龄、日期、左右、层厚以及增强的标记,TR、TE 等2、仔细观察每一帧图像,目的在于发现疾病或异常的征象3、当发现病变后,应看其病变在T1加权、T2加权上的信号特 征,是高信号低信号等信号混杂信号无信号4、通过不同方位图像观察,确定病变位置、形态、数量、大小5、观察病变邻近器官或组织结构有无异常:受压、移位(占位 效应);扩张、增大(失空间效应);破坏或吸收;等等6、增强扫描观察病变有无强化及强化程度;延迟扫描强化特点7、综合MR所见,结合临床及其他影像学检查材料作出诊断,