基于用户的协同过滤算法-UserCF流程图.docx

上传人:夺命阿水 文档编号:845581 上传时间:2023-12-24 格式:DOCX 页数:4 大小:96.94KB
返回 下载 相关 举报
基于用户的协同过滤算法-UserCF流程图.docx_第1页
第1页 / 共4页
基于用户的协同过滤算法-UserCF流程图.docx_第2页
第2页 / 共4页
基于用户的协同过滤算法-UserCF流程图.docx_第3页
第3页 / 共4页
基于用户的协同过滤算法-UserCF流程图.docx_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《基于用户的协同过滤算法-UserCF流程图.docx》由会员分享,可在线阅读,更多相关《基于用户的协同过滤算法-UserCF流程图.docx(4页珍藏版)》请在课桌文档上搜索。

1、UserCF算法主要流程:主要全局变量:constintusersum=6040;用户总数constintitemsum=3952;工程总数constintN=10;为用户推荐前N个物品inttrainuserusersumitemsumHO;训练集合useritemrate矩阵inttestusersumitemsum-O;测试集合useritemrate矩阵struct_simidoublevalue;/相似值intnum;相似用户号;_simisimiUserusersumusersum;排序后的相似性矩阵doubletrainuserltemusersumitemsum=O.O;/us

2、eritem兴趣程度矩阵intrecommedusersumN=0;/为每个用户推荐N个物品拆分数据集函数intSplitData(intm,intk)主要流程:将数据集拆分为测试集test和训练集trainuser,其中Vm为测试集,取不同的k=m-l值在相同的随即种子下可得到不同的测/训集合计算用户之间相似度函数doubleSimility(int*Ua,int*Ub)主要流程:计算用户Ua和Ub的相似性,返回值为Ua和Ub的相似度函数intsort(double*simArr,_simi*simStruct)主要流程:根据相似性由高到低排序,每行第一个是自三用户相似性矩阵排序用户i对物品j预测兴趣程度函数doublegetllserLikeltem(inti,intj,intk)主要流程:利用k个最近邻来计算推荐函数intgetRecommend()主要流程:通过物品兴趣程度,推荐前N个

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号