《高压脉冲电场对谷子、荞麦、燕麦种子萌发期酶活性的影响.docx》由会员分享,可在线阅读,更多相关《高压脉冲电场对谷子、荞麦、燕麦种子萌发期酶活性的影响.docx(32页珍藏版)》请在课桌文档上搜索。
1、高压脉冲电场对谷子、养麦、燕麦种子萌发期酶活性的影响摘要:高压脉冲电场技术为一种新兴的种子处理技术,通过在短时间内施加高强度的电场脉冲,可以改变种子内部的生理和代谢状态,从而促进种子萌发和生长。国内外的研究表明,高压脉冲电场处理能够明显提高种子的活力和酶活性,促进种子萌发和生长。例如,国内某些研究表明,高压脉冲也场处理可以显著提高谷子、玉米、小麦、油菜等作物种子的POD、CAT、SOD等酶活性,从而促进种子的代谢和萌发。此外,高压脉冲电场处理还可以提高种子的抗逆性能,增强其对干旱、低温、高盐等环境胁迫的耐受性。一些国外研究也证实了高压脉冲电场处理对种子的萌发和生长具有促进作用,并且可以改善种子
2、的品质和产量。例如,英国的一项研究表明,高压脉冲电场处理可以显著提高种子的萌发率和生长速度,同时还可以提高作物的叶面积和产量。为了探讨适宜高压脉冲电场处理养麦种子促进种子萌发的机制,本文研究了高压脉冲电场对养麦酶活性的影响。采用分组重复实验的方法,研究高压脉冲电场处理对种子萌发期过氧化物酶(PoD)活性、超氧化物歧化酶(SoD)活性的影响。燕麦种子的POD和SOD活性均呈现出不同程度的增加。进一步分析表明,高压脉冲电场处理可能通过调节种子内氧化还原系统、激活种子代谢途径等途径影响种子酶活性。这些结果为种子萌发期酶活性的调控提供了新思路和方法,同时也为高压脉冲电场技术在种子生产领域的应用提供了理
3、论基础。研究高压脉冲电场(HPEF)预处理杂粮种子对谷子、养麦酶活性的影响,HPEF预处理参数为(脉冲个数30个、50个、70个;脉冲时间30us、50s、70s;场强500V1500V.2500V).结果显示,经过高压脉冲电场处理后,谷子和养麦种子的过氧化物酶(POD)活性显著提高,而超氧化物歧化酶(SOD)活性则有所下降。燕麦种子的POD和SoD活性均呈现出不同程度的增加。进一步分析表明,高压脉冲电场处理可能通过调节种子内氧化还原系统、激活种子代谢途径等途径影响种子酶活性。这些结果为种子萌发期酶活性的调控提供了新思路和方法,同时也为高压脉冲电场技术在种子生产领域的应用提供了理论基础。需要注
4、意的是,不同种类的作物种子对高压脉冲电场处理的响应具有差异性,因此需要根据具体情况进行优化处理。同时,高压脉冲电场处理的技术参数(如电场强度、脉冲数目、脉冲宽度等)也需要进行优化调整,以达到最佳的处理效果。综合国内外研究结果可以看出,高压脉冲电场技术在提高作物种子品质、增加产量和提高抗逆性能等方面具有很多的应用价值,值得进一步深入研究和推广应用。关键词:高压脉冲电场:过氧化物酶(POD):超氧化物歧化酶(SoD);萌发:酶活性EffectofhighvoltagepulsedelectricHeldonenzymeactivityduringgerminationofcereal,buckwh
5、eatandoatseedsAbstract:High-voltagepulsedelectricfieldtechnologyisanemergingseedtreatmenttechnologythatcanaltertheinternalphysiologicalandmetabolicstateofseedsbyapplyinghigh-intensityelectricfieldpulsesoverashortperiodoftime,therebypromotingseedgerminationandgrowth.Researchathomeandabroadhasshowntha
6、thighvoltagepulsedelectricfieldtreatmentcansignificantlyincreaseseedvigourandenzymeactivity,promotingseedgerminationandgrowth.Forexample,certainstudiesinChinahaveshownthathighvoltagepulsedelectricfieldtreatmentcansignificantlyincreasetheenzymeactivitiesofPOD,CATandSODinseedsofcereals,maize,wheatandr
7、ape,therebypromotingseedmetabolismandgermination.Inaddition,highvoltagepulsedelectricfieldtreatmentcanalsoimprovetheresistanceperformanceofseedsandenhancetheirtolerancetoenvironmentalstressessuchasdrought,lowtemperatureandhighsalt.Anumberofforeignstudieshavealsodemonstratedthathighvoltagepulsedelect
8、ricfieldtreatmentcanpromoteseedgerminationandgrowth,andcanimproveseedqualityandyield.Forexample,astudyintheUKshowedthathighvoltagepulsedelectricfieldtreatmentsignificantlyincreasedthegerminationrateandgrowthrateoflettuceseeds,aswellasincreasingleafareaandyieldoflettuce.Inordertoinvestigatethemechani
9、smofseedgerminationinbuckwheatseedstreatedwithasuitablehighvoltagepulsedelectricfield,theeffectofhighvoltagepulsedelectricfieldontheenzymaticactivityofbuckwheatwasinvestigated.Theeffectofhigh-voltageelectricfieldtreatmentonperoxidase(POD)activityandsuperoxidedismutase(SOD)activityduringseedgerminati
10、onwasinvestigatedusingagrouprepetitionexperiment.Theeffectofhighvoltagepulsedelectricfield(HPEF)pretreatmentontheenzymaticactivityofcerealsandbuckwheatseedswasstudiedwiththefollowingparameters(numberofpulses30,50and70;pulseduration30s,50sand70s;fieldstrength500V,1500Vand2500V).Theresultsshowedthatth
11、eperoxidase(POD)activityofcerealandbuckwheatseedswassignificantlyincreasedandthesuperoxidedismutase(SOD)activitywasdecreasedafterhighvoltagepulsedelectricfieldtreatment.BothPODandSODactivitiesofoatseedsshowedvaryingdegreesofincrease.Furtheranalysisindicatedthathighvoltagepulsedelectricfieldtreatment
12、mayaffectseedenzymeactivitybyregulatingtheredoxsystemwithintheseedsandactivatingseedmetabolicpathways.Theseresultsprovidenewideasandmethodsfortheregulationofenzymeactivitiesduringseedgermination,andalsoprovideatheoreticalbasisfortheapplicationofhighvoltagepulsedelectricfieldtechnologyinseedproductio
13、n.Itisimportanttonotethattheresponseofdifferenttypesofseedstohighvoltagepulsedelectricfieldtreatmentvaries,sothetreatmentneedstobeoptimisedaccordingtothespecificsituation.Atthesametime,thetechnicalparameters(e.g.electricfieldstrength,numberofpulses,pulsewidth,etc.)ofthehighvoltagepulsedelectricfield
14、treatmentalsoneedtobeoptimisedinordertoachievethebesttreatmenteffect.Theresultsofcomprehensivedomesticandinternationalresearchshowthathigh-voltagepulsedelectricfieldtechnologyhaspotentialapplicationsinimprovingthequalityofcropseeds,increasingyieldsandimprovingresistancetostress,andisworthyoffurtheri
15、n-depthresearchandapplication.Keywords:high-voltagepulsedelectricfield;peroxidase(POD);peroxidediastase(SOD);germination;Enzymeactivity目录1弓I言32实验材料和方法52.1仪器设备72.2试剂82.3材料82.4方法步骤83谷子酶活性测定94养麦酶活性测定105燕麦酶活性测定176结果分析与讨论237结论238研究展望249参考文献2510致谢261引言酶是生物体内一种高效催化剂,能够加速化学反应的速率,广泛应用于食品、医药、化工等领域。近些年来,高压脉冲电场
16、(HighVoltagePulseElectricField,HVPEF)作为一种新起的物理处理技术,受到了广泛关注。HVPEF能够在瞬间产生高强度电场,对生物体内的细胞和分子结构产生影响,具有杀菌、杀病毒、改善品质等作用。同时,随着研究的深入,越来越多的研究表明,HVPEF也可能影响酶的活性。因此,研究HVPEF对酶活性的影响,对于进一步理解HVPEF的作用机制,以及推动其在食品、医药等领域的应用具有重要的意义。本文将介绍一些与HvPEF对酶活性影响相关的研究,并探讨其可能的机制。山西素有“杂粮王国”之誉,是全国杂粮主产区之一。所产小杂粮粒大、色艳,质优,在国内外市场上享有盛誉。研究表明,高
17、压脉冲电场可以影响谷子、养麦、燕麦种子萌发期的酶活性。高压脉冲电场处理可以提高谷子、养麦、燕麦种子萌发期的超氧化物歧化酶、过氧化物酶的活性,从而增强种子的抗氧化能力。种子萌发过程中,酶活性是非常重要的因素。种子酶活性的增强可以促进种子的萌发和生长,同时也可以提高种子的抗氧化能力,减少氧化损伤。高压脉冲电场作为一种新型非热加工技术,已经广泛应用于食品加工、生物技术等领域。在种子处理方面,高压脉冲电场也被认为是一种有潜力的技术。本文将探讨高压脉冲电场对谷子、养麦、燕麦种子萌发期酶活性的影响,为种子处理技术的研究提供一定的参考。高压脉冲电场是一种非热性处理方法,可用于改善种子品质、增加产量和提高作物
18、抗性。在谷子、养麦和燕麦等植物中,种子萌发过程涉及多种酶活性变化,包括淀粉酶、脂肪酶等。因此,探究高压脉冲电场对这些作物种子酶活性的影响,可以为优化种子处理技术和提高作物生产效益提供实验依据。从理论价值上来看,这个课题可以探讨高压脉冲电场在种子萌发期对酶类活性的影响机制,以及相关调节途径的探究;同时也可以研究不同种类或剂量的高压脉冲电场对种子酶活性的差异性影响,为优化种子处理工艺提供参考。从实践价值来看,该课题的研究结果可以为种子处理技术的改进和作物产量提高提供指导。通过优化种子处理工艺,可以提高种子质量和数量,减少种子萌发中的损失,同时还可以提高植物的生长效率和抗逆性,从而为实现绿色种业和可
19、持续农业发展做出积极贡献。国内外研究概况方面,目前已有一些关于高压脉冲电场对种子萌发期酶活性影响的研究。例如,一些国内外学者已经研究了高压脉冲电场对谷子、小麦等作物种子酶活性的影响;而在国内,一些研究人员也通过实验和模拟等手段探究了高压脉冲电场对玉米、水稻等作物种子酶活性的影响。但是,目前仍需要更多的实验数据和理论探讨来验证高压脉冲电场技术在种子处理方面的实际应用价值。高压脉冲电场是一种新型的物理处理技术,它通过施加短暂、高强度的电场脉冲,可以改变物质的分子结构、表面电荷分布和空间构型,从而影响其物理、化学和生物学性质。近些年来,越来越多的研究表明,高压脉冲电场可以对酶的活性产生影响,这为提高
20、酶的活性和开发高效酶制剂提供了新思路和新方法。本文将介绍一些与高压脉冲电场对酶活性影响相关的研究,并探讨高压脉冲电场对酶活性影响的可能机制。这些研究不仅有助于更好地理解高压脉冲电场的物理作用机制,也为高压脉冲电场在酶制剂开发和应用中的发展提供了新思路和新方向。2实验材料和方法试验选用的杂粮种子采集于山西农业大学作物种子基地,分别为晋谷21谷种、黑丰1号苦养麦、晋杂燕麦优种,试验所用仪器设备主要有:美国BTX(ECM830)高压脉冲电场发生器以及配套的稳压电源、示踪仪、特配电极与电极杯;自制高压静电场发生器试验装置。它包括金属网,电场发生器,塑料绝缘棒,金属板等部件,使用闭环调节高频脉冲宽度调制
21、技术,将50赫兹的交流电压,通过多级倍压整流,获得OT50KV的输出电压。由网状电极构成的两层间的直流高电压,在网状物与金属片之间构成一个连续可调节的均匀正向电场,电场强度=电压(kV)/极间距离(Cm)MP2002型电子天平、精度为0.001g,DHG-9023A型电热恒温干燥箱。运用高压脉冲电场和静电场两种电场预处理谷子、养麦、高粱种子根据预试验选定高压脉冲电场参数为:电场强度(500V、1500V、250OV)、脉冲个数(30个、50个、70个)、脉冲时间(30us、50s,70s)三个因素、三个水平。根据三因素三水平来设计正交试验方案,有27个脉冲电场处理组与1个对照组共28组。从存放
22、的备选试验种子中每组选择籽粒饱满大小颜色一致的种子,对应编号以此逐一对该种子样本进行电场预处理。高压静电场的参数取值范围在1020kV,板间距33mm,每个处理挑选饱满、大小相致的50粒种子,均匀铺洒于折叠的纸盒中,放置于金属板上。将处理好的种子放入培养皿培养并将它们分类编号,如IT3-3,对照组(CK)O等到种子萌发后取样测其相关的数值。图1养麦种子培养图2萌发的养麦种子表1高压脉冲电场试验设计分组组数电场强度/V脉冲个数/个脉冲时间/U30305070301-950050507030705070303050703010-18150050507030705070303050703019-27
23、250050507030705070对照0001仪器设备1.高速离心机:高速离心机属于常规实验室用离心机,广泛用于化学,医药,生物等科研教育和生产部门,它能利用转子高速旋转产生的强大离心力,分离液体与固体颗粒或液体混合物中各组分,适用于微量样品快速分离合成。在本实验中将研磨好的种子酶液离心,取其上层清液来进行实验。2 .分光光度计:也被称为光谱仪,是一种可以将复杂光线,分解成不同光线的仪器。该测试通常包含可见光区(380-780微米),以及紫外线区(200-380微米)。由于不同的光源都有自己独特的发光谱,所以可以选用不同的发光材料来做测量光源。铝灯的发光光谱是指由其发光的波长在380-780
24、nm之间,经过三棱镜的折射,得到一系列的红色,橙色,黄色,绿色,蓝色,班蓝,紫色的色层。本方法适用于可视化光分光光度法。3 .微量进样器:微量进样器是用微升为单位的移液器具,由针尖、芯子和外套等主要部件组成。根据其结构特点,可将其划分为三类:无液体型、气密型和有液体型。当今使用的微量进样器的主要规格有05ul到1000u1不等。微量进样器是气相色谱分析、液相色谱分析、微量滴定等微量分析检测时必不可少的定量精密进样计量器具,这些大型的色谱分析仪器已经广泛应用在现代社会的各个方面,所以它的量值准确性和重复性直接影响分析结果的可靠性。4 .烧杯、棕色瓶(放置药液),量筒,试管,锥形瓶5 .天平:测量
25、样品,药品重量6 .蒸储水7 .移液器:移液器也称作移液枪,是能够在一定量程范围内,将液体从原容器内移取到另一容器内的一种计量工具。(0.1-2.5ul、0.5-10ul、IOTOOUl、20-200ul、100-1000ul)8 .研钵:研钵是在实验中研碎实验材料的容器,有钵杵。常用的是瓷制品,也有由氧化铝材料、玻璃、铁、玛瑙、制成的研钵。用于研磨固体物质和进行粉末状固体的混和。其规格用口径的大小表示。9 .镶子(夹取样品放置于取样器中)2.2试剂1.50mol1/L磷酸缓冲液(PH7.8);甲液:磷酸氢二钠14.32克定容200m1乙液:磷酸二氢钠6.24克定容200m1甲液取91.5m1
26、乙液取8.5m1混合100ml稀释4倍到400ml2. 130moll/L的甲硫氨酸(Met)溶液:称取1.9389gMet用磷酸缓冲液溶解定容至100ml;3. 750UmoI/L的NBT溶液:称取0.06133gNBT用磷酸缓冲液溶解定容至IOomL,避光保存4. 20umol/L的核黄素溶液:称取0.0075g核黄素用磷酸缓冲液溶解定容至1000mL,随用随配,避光保存;5. 100umol/L的EDTA-Naz溶液:称取0.0372gEDTA-Na2-2H20,蒸储水溶解定容至1000mL;6. SOD提取介质:50mmol/L磷酸缓冲液(pH7.8)内含现聚乙烯毗咯烷酮(PVP)。2
27、. 3材料正常生长的谷子、养麦、燕麦组织器官。3. 4方法步骤3.50 D的提取:先称取植物组织器官0.1g加入预冷的研钵里,再加ImlPH为7.8的磷酸缓冲液研磨,倒入取样管里,再加入ImIPH为7.8的磷酸缓冲液将研钵冲洗干净接着倒入取样管中。取2mL提取液在4下离心机下离心15min,上清液就为Sc)D粗提液。3.51 D活性测定:用透明度好、质底相同的15x150mm试管多支,测定管3支、光下对照各3支,暗中对照(调零)1支。(1)掌握SoD酶的提取、分离、检测的相关步骤。(2)掌握离心机的使用。实验原理:在碱性环境下,邻苯三酚可以快速地进行自我氧化,并释放出02-,从而产生一种带色的
28、中间产物。中间物的积累在3045s之后,与时间呈线性关系,通常线性时间保持在4min之内,并且在420nm波长有强烈的光吸收。在有SOD的时候,因为它可以催化(T与H结合生成和从而阻隔了中间产物的积累,因此,可以通过测定光吸收来求出SOD的酶活性。计算结果:在SOD总活性=(Ack-AE)XV(Ack0.5WVt)此式中,V为样品液总体积(ml);ACk为照光对照管的吸光度;Vt为测定时样品用量(ml);AE为样品管的吸光度;W为样品鲜重(g)POD过氧化物酶活性测定实验原理在过氧化物酶的催化下,过氧化氢能够将愈创木酚氧化成茶褐色产物,410nm处有最大光吸收。实验步骤1 .酶液提取0.1g+
29、lmL50mMPH=7.8磷酸缓冲液研磨成浆冷冻离心15min取20mL酶液2 .测定:取3mL反应液并加20mL酶液后测定了3min前后差值A,以0.1MPH=60磷酸缓冲液为参比3 .计算结果酶活性计算:以每分钟OD值变化(升高)0.01为1个酶活性单位(u)。POD=(A470Vt)/(WVs0.01t)(ugmin)AA470为反应时间内吸光度的变化;VS为测定时取用酶液体积(ml,20ul);W为样品鲜重(g);t为反应时间(min,3min);Vt为提取酶液总体积(ml,lml)0试剂配制反应混合液:5OmL(PH=60.0.1M)PBS+19UL愈创木酚3mL管加热溶解+28ul
30、30%过氧化氢(冷却后加入)注:反应液配制由于子愈创木酚难溶,需要加热一段时间。加入过氧化氢前注意冷却。3谷子酶活性测定表2SOD酶活性(500V)1-11-21-32-12-22-33-13-23-387.64592.65991.34575.35658.62188.74574.35223.65875.36545.62535.65156.43263.52419.65270.562177.65286.32549.35240.35047.62378.65379.54284.96515.89597.561156.35816.254酶活性最大值177.625(500V70个30US)表3SOD酶活性(
31、1500V)1-11-21-32-12-22-33-13-23-323.65445.632100.256100.23536.23588.365111.358203.354320.65286.35998.24373.56246.35263.259153.268236.25453.245113.265157.562163.254123.62595.62396.365103.548136.259136.254123.845酶活性最大值320.652(1500V70个70us)表4SOD酶活性(2500V)1-11-21-32-12-22-33-13-23-336.2636.34536.25452.3
32、6459.36439.9852.63214.36210.35252.36113.62111.35265.99463.25459.6382.65441.36841.5818.36536.235126.354156.364153.354165.325156.326136.254200.652酶活性最大值200.625(2500V70个70US)表5PoD酶活性(500V)1-11-21-32-12-22-33-13-23-352.66750.00062.00049.65747.33346.33342.00036.33338.66734.00036.00039.00026.66737.66735.6
33、3723.67744.64738.35335.34343.32355.00058.00053.66734.057.00055.33350.657酶活性最大值62(500V30个70US)表6POD酶活性(1500V)1-11-21-32-12-22-33-13-23-37.33347.33337.33335.62117.35226.3202.3627.33612.30033.33335.65113.66415.32528.63032.14020.36225.32130.52035.43336.52314.66715.66328.66736.21020.66125.33230.620酶活性最大值
34、47.333(1500V30个50US)表7POD酶活性(2500V)1-11-21-32-12-22-33-13-23-330.23317.36217.66724.35215.6333.2108.5211.25014.35244.32559.62158.36238.00025.62340.32021.56020.52026.35840.62040.62128.36030.23336.23133.26020.35432.66243.250酶活性最大值59.621(2500V30个50US)谷子超氧化物歧化酶活性最大值为320.652(1500V70个70US)谷子过氧化物酶活性最大值为62(5
35、00V30个70US)4莱麦酶活性测定表8SOD吸光度(500V)1-11-21-32-12-22-33-13-23-3CK光1.3331.2531.1661.1201.1401.1460.9360.9680.9991.2111.1671.1811.1861.1121.0661.1700.9780.9280.9231.0811.1340.9771.2011.1601.1651.2201.0020.9270.9060.9811.0551.042IO表9SoD酶活性(500V)1-11-21-32-12-22-33-13-23-3129.22795.33953.20828.28639.36842.
36、61895.89770.90948.22860.91463.44023.7413.71555.28263.436102.414106.5445.49570.89150.06952.68780.06646.108103.236120.92761.22310.635酶活性最大值为129.227(5OOV30个30US)表10PoD吸光度(500V)1-11-21-32-12-22-33-13-23-3CK0.06900.05800.03700.06700.05100.03500.06000.03500.03300.04200.13000.11000.06100.11700.11700.08700.
37、16300.05400.05400.08100.06700.05200.10500.06700.03700.02400.04200.02900.02600.03100.14800.10100.21600.14500.04700.05400.10400.03200.04200.05300.11200.11000.05400.08300.04200.01400.03300.04000.02400.03400.22400.29300.10700.16200.08600.03600.07500.05600.05900.0830表11PoD酶活性(500V)1-11-21-32-12-22-33-13-
38、23-3CKL020.870.400.831.100.871.720.320.350.651.350.821.851.300J70.501.030.050.270.370.371.873.050.881.320.730.370.700.270.58酶活性最大值1.87(500V30个50US)表12SOD吸光度(500V)1-11-21-32-12-22-33-13-23-3CK光1.1211.0971.0440.8390.8970.8400.8060.8600.8680.8680.9531.0051.1341.0020.8460.8540.8310.8670.8330.8470.9650.8
39、501.1701.0980.9960.8750.7850.8730.8760.8251.0710.9630.963表13SoD酶活性(500V)1-11-21-32-12-22-33-13-23-3122.462110.70282.81658.21211.77357.35787.61840.67434.21734.21760.418128.62458.62352.27045.59765.12635.01763.385144.974111.20255.00028.663107.61830.24127.87770.40097.367酶活性最大值144.974(500V30个30us)表14POD吸
40、光度(500V)1-11-21-32-12-22-33-13-23-3CK0.0540.0410.0380.0680.0100.0380.0770.0350.0350.0130.0930.0870.0750.1670.0210.0520.1890.0530.0470.0450.0720.0470.1860.0180.0420.0330.0600.0670.0430.0360.1550.1020.3870.0360.0750.0610.1710.1430.0830.0710.0310.0250.2180.0240.0160.0710.0880.0190.0240.0270.0380.0570.4
41、640.0630.0300.1080.1930.0310.0510.085表15PoD酶活性(500V)1-11-21-32-12-22-33-13-23-3CK0.650.770.621.650.180.231.870.300.200.531.380.923.350.300.550.471.851.270.670.580.120.534.100.650.230.621.750.200.450.97酶活性最大值1.87(500V70个30us)表16SOD吸光度(1500V)1-11-21-32-12-22-33-13-23-3CK光0.2460.1640.2550.1510.2400.110
42、0.1060.2930.0560.3680.4680.2350.3230.3560.3280.2510.1170.1910.2600.1400.1150.3930.3650.1480.2350.1630.2660.1680.1110.0930.3110.1120.389表17SoD酶活性(1500V)1-11-21-32-12-22-33-13-23-3458.7801018.171419.2941162.649486.7501842.0001936.4152793174254.643511.149192.074113.090179.085436.4941692.308780.942398.5
43、381305.85794.0271199.595511.1491028.466374.662978.2141819.4592299.355224.952酶活性最大值4254.643(1500V70个70US)表18PoD吸光度(1500V)1-11-21-32-12-22-33-13-23-3CK0.0150.0010.0170.0230.0210.0010.1720.1610.0290.0170.0190.0070.0230.0580.0440.0040.4660.4930.0900.0240.0090.0030.0010.007-0.007-0.0020.0410.1160.0950.0360.0120.0080.0080.0190.0050.0010.1790.3910.1540.2190.0020.0390.0070.0040.0150.0070.0430.03