IRENA-制氢用水(英)-2023_市场营销策划_重点报告202301202_doc.docx

上传人:夺命阿水 文档编号:1072205 上传时间:2024-03-13 格式:DOCX 页数:75 大小:1.42MB
返回 下载 相关 举报
IRENA-制氢用水(英)-2023_市场营销策划_重点报告202301202_doc.docx_第1页
第1页 / 共75页
IRENA-制氢用水(英)-2023_市场营销策划_重点报告202301202_doc.docx_第2页
第2页 / 共75页
IRENA-制氢用水(英)-2023_市场营销策划_重点报告202301202_doc.docx_第3页
第3页 / 共75页
IRENA-制氢用水(英)-2023_市场营销策划_重点报告202301202_doc.docx_第4页
第4页 / 共75页
IRENA-制氢用水(英)-2023_市场营销策划_重点报告202301202_doc.docx_第5页
第5页 / 共75页
点击查看更多>>
资源描述

《IRENA-制氢用水(英)-2023_市场营销策划_重点报告202301202_doc.docx》由会员分享,可在线阅读,更多相关《IRENA-制氢用水(英)-2023_市场营销策划_重点报告202301202_doc.docx(75页珍藏版)》请在课桌文档上搜索。

1、IntemotionolRenewablej.,-.燹IRENAWaterforhydrogen2productionOIRENA2023Unlessotherwisestated,materialintispublicationmaybefreelyused,shared,pied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtot

2、hirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.ISBN:978-92-9260-526-1citation:IRENAandBluerisk(2023),Waterforhydrogenproduction,InternationalRenewableEnergyAgency,Bluerisk,AbuDhabi,UnitedArabEmirat

3、es.ABOUTIRENATheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfutureandservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonr

4、enewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergyzgeothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.www.irena.orgABOUTBLUERISKBlueriski

5、sawaterstrategyanddataanalyticsconsultancyfocusedonenhancingresilienceandreducingriskinthefaceofemergingwaterchallenges.BluerkkACKNOWLEDGEMENTSThereportwasdevelopedundertheguidanceofUteCollieracting-Director,IRENAKnowledgePolicyandFinanceCentreandauthoredbyEmanueleBianco(IRENA),TianyiLuo(Bluerisk),a

6、ndDivyamNagpal(ex-IRENA).IRENAcolleaguesAnn-KatbrinLipponer,LuisJaneiroandFranciscoBoshellprovidedvaluableinput.AnetaCornell(EcoIab),LorenzoRosa(StanfordUniversity),ChaoZhangandYinshuangXia(TongjiUniversity),providedtechnicalcontributionstothereport.MarinaMelnikovaandYuryMelnikov(Mytonastars)provide

7、dusefulcontributionsandobservations.Thereportbenefitedfromthereviewsandcommentsofexperts,includingAlistairWyness,RachaelRaid(BP)zNitinBassi(CEEW),YuZhang,ZiyanSha(ChinaHydrogenEnergyIndustryPromotionAssociation),CristianCarraretto,RobertoGonzales(EBRD),AnetaCornell,EmilioTenuta(EcoIab),MassimoSantar

8、elli(PolytechnicUniversityofTurin),AlejandroLongueira(RolandBerger)andSmeetaFokeer(UNIDO).PublicationsupportwasprovidedbyFrancisFieldandStephanieClarke(IRENA).ThereportwaseditedbyFayreMakeig,withdesignprovidedbyElkanodata.Forfurtherinformationortoprovidefeedback:publicationsirena.orgDISCLAIMERThispu

9、blicationandthematerialhereinareprovideduasisw.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnores

10、ponsibilityorliabilityforanynsequenceofuseofthepublicationormaterialherein.TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnatu

11、rethatarenotmentioned.ThedesignationsemployedandtepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orncerningthedelimitationoffrontiersorboundaries.TableofcontentsGlossary5Executivesummar

12、y6Chapter 1Introductiontothehydrogen-waternexus14Chapter 2Areviewofwaterquantityrequirementsincommercial-scalehydrogenproduction21Chapter 3Waterfootprintandrisksofglobalhydrogenproduction32Chapter 4Deep-diveanalysesofnorthernChina,theGulfandEurope42Chapter 5ConclusionsandRecommendations54References5

13、9Appendix63FiguresFigureSlAcomparisonofaveragewaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnologyFigureS2Currentandprojectedfreshwaterwithdrawalforglobalhydrogenproduction,bypathwayFigure2.1Schematicsofprocess-specificwaterwithdrawalandnsumptioninlitresfortypicalhydrogentechnologi

14、estogenerate1kilogrammeofhydrogenFigure2.2ShareofthewaterwithdrawalneedsofproductionandcoolingintheoverallwaterdemandofhydrogenproductionexamplesFigure2.3AcomparisonofaveragewaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnologyFigure2.4Relationsbetweenhydrogenconversionefficiencyand

15、waterwithdrawalandconsumptionintensitiesofatypicalelectrolysisprojectFigure2.5Annualwaterwithdrawaloftypicalhydrogenproductionprojects,thermalpowerplantsandmunicipalitiesFigure3.1Currentandprojectedfutureglobalhydrogenproductionunderthe1.50CScenarioFigure3.2Currentandprojectedfreshwaterwithdrawalfor

16、globalhydrogenproduction,bypathwayFigure 3.3Figure 3.4Freshwaterforhydrogenproductionandclingztodayto2050Globalwaterstressconditionsandgreenandbluehydrogenprojectlocationsfor2040Figure3.5Distributionofglobaloperationalandplannedgreenandbluehydrogenproductioncapacitiesbywaterstresslevel,todayandin204

17、0Figure3.6Distributionofglobaloperationalandplannedgreenandbluehydrogenproductioncapacitiesbywaterstresslevelandregionin2040Figure4.1Hydrogen-producingcoalchemicalplantsandlevelsofwaterstressintheYellowRiverBasinFigure4.2Annualwaterwithdrawalandconsumptionduetocoal-basedhydrogenproductionintheYellow

18、RiverBasin,byprovinceFigure4.3Distributionofhydrogen-producingcoalchemicalplantsintheYellowRiverBasinbycurrentwaterstresslevel44Figure4.4Annualwaterwithdrawalandnsumptionrequirementsofcoal-basedhydrogenproductionintheYellowRiverBasinunderfourscenarios45Figure4.5HydrogenplantsintheGulfCooperationCoun

19、ciluntriesandtheregion,scurrentwaterstressconditions46Figure4.6CurrentandprojectedfuturehydrogenproductionoftheGulfCperationCouncilcountries47Figure4.7CurrentandprojectedseawaterwithdrawalsanddesalinatedseawaterrequirementsofhydrogenproductionintheGulfCperationCouncilcountries48Figure4.8Anoverviewof

20、hydrogenprojectsinEurope49Figure4.9AmapofwaterstressandoperationalandplannedhydrogenprojectsbyproductiontechnologyinEurope50Figure4.10ThedistributionofEuropesoperationalandplannedhydrogenprojectsbywaterstresslevelsin204051Figure4.11CurrentandprojectedhydrogenproductioninEurope52Figure4.12Currentandp

21、rojectedfuturefreshwaterwithdrawalandconsumptionrequirementsofhydrogenproductioninEurope53TablesTable2.1Asummaryofwaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnology29Table3.1Currentandprojectedfreshwaterwithdrawalandconsumptionforhydrogenproduction(billioncubicmetres),todayto2050

22、37TableAlWaterwithdrawalandconsumptionintensitydatasources63BoxesBox3.1HydrogenintheWorldEnergyTransitionsOutlook32Box3.2Whatiswaterstress?39AbbreviationsAEMATRCCSanionexchangemembraneauto-thermalreformingcarboncaptureandstorageCCUScarboncapture,utilisationandstorageGCCGulfCperationCouncilGHGgreenho

23、usegasesH2PEMhydrogenprotonexchangemembranePVSDGSMRSOECphotovoltaicSustainableDevelopmentGoalssteammethanereformingsolidoxideelectrolysercellsUnitsofmeasureGWkggigawattkilogramktkilotonneLm3litrecubicmetreMtmegatonneGlossaryBlowdownwater:Waterdrainedintentionallyfromcoolingsystemstopreventmineralbui

24、ld-up.Cycleofconcentration:Ameasureofthebuild-upOfdissolvedmineralsinclingsystems.Thecycleiscalculatedbycomparingtheconcentrationofaparticulardissolvedsolidinthewatercomingoutofacoolingsystemtoitsconcentrationinthewaterflowingintothesystem.Deionisedwater:Atypeofhighlypurifiedwaterthatdoesnotcontaina

25、nyatoms,ionsormolecules.Deionisationremovesdissolvedsubstanceslikesodiumchloride,minerals,carbondioxide,organicpollutantsandvariousothercontaminantsfromwater.Makeupwater:Thewateraddedbackintoacoolingsystemtoreplacewaterlostduetoevaporation,leaks,etc.Permeaterate:Inmembrane-basedwatertreatmentsystems

26、,theratioofthevolumeofwaterpassingthroughthemembranetothetotalquantityofrawwater.Waterwithdrawal:Measuredbythequantityofwaterwithdrawnfromasource(e.g.river,Iakezgroundwater)foruse.Waterwithdrawal/consumptionintensity:Thequantityofwaterwithdrawnfororconsumedinthegenerationofaunitofaproduct(e.g.amegaw

27、atthourofenergy,amegatonneofhydrogen).Waterconsumption:Theportionofwithdrawnwaterthatisnotreturnedtothesource.Waterstress:Measuredusingtheratioofthetotalwaterwithdrawaltotheavailablerenewablefreshwatersupply.Itshouldbecalculatedatawatershedscale.Waterstressposessignificantriskstohumanandenvironmenta

28、lwell-beingandisaproxyforwatercompetitionamongsectorsanduses.ExecutivesummaryTheenergysectoristhelargestwateruserofallindustrialsectors.Waterisrequiredinmanyofitsprocesses,fromfuelextractiontoelectricitygeneration.AsseenintherecentnuclearpowerplantshutdownsinEuropein2022zwatershortagescansignificant

29、lydisruptthesector.Andthedisruptionsarelikelytocontinueandtobecomeevenmorefrequent,especiallyasextremeweathereventsintensifyamidachangingclimate.Toaddresstherisingclimaterisks,theenergysectorisalreadyestablishinggoodpracticesforintegratingwaterconsiderationsintoplanning.Thesectorcanmitigateitswaterr

30、isksbytransitioningtorenewableenergysources,whichconsumelesswaterthantraditionalfossilfuels.Cleanhydrogenhasemergedasaviablealternativeinthefightagainstclimatechange.Hydrogenisagamechanger,especiallyforhardtoabate”,suchassteelmaking,chemicalproduction,aviationzshippingandtrucktransport.Assessingthew

31、ateruseimplicationsofhydrogenproduction,especiallyinwater-stressedareas,isessentialinmanagingpotentialdisruptionstoproduction.Allhydrogenproductiontechnologiesrequirewaterasaninput.Waterisneedednotonlyinproductionbutalsoforcooling.Thewithdrawalandconsumptionofwaterforcleanhydrogenproductionhavebeend

32、ebated,yettoooftenthediscussionsarenotinformedbyin-depthknowledgeofthesestill-nascenttechnologies.Thisreport,mpiledbytheInternationalRenewableEnergyAgency(IRENA)andBlueriskzseekstoanswersomeofthesequestions.Howmuchwaterdoesahydrogenplantactuallyconsume?Thisreportreviewsthewaterwithdrawalandconsumpti

33、onrequirementsofvarioushydrogenproductiontechnologiesindetail.Datahavebeensourcedfrominterviewswithindustryexpertsandareviewofexistingliterature,sheddinglightonthewaterimplicationsofscalingupcleanhydrogenproduction.AveragewaterwithdrawalandconsumptionintensityandrangesarevisualisedinFigureSI.Greenhy

34、drogenisthemostwaterefficientofallcleanhydrogentypes.Itisfoundthat011average,protonexchangemembrane(PEM)electrolysishasthelowestwaterconsumptionintensityatabout17.5litresperkilogrammeofhydrogen(Lkg).AlkalineelectrolysisfollowsPEMelectrolysis,withawaternsumptionintensityof22.3Lkg.Thesemaybecomparedwi

35、thsteammethanereforming-carboncapture,utilisationandstorage(SMR-CCUS)zat32.2Lkgzandautothermalreforming(ATR)-CCUSat24.2Lkg.figureSiAcomparisonofaveragewaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnologyWithdrawalConsumptionNote:Tapwater(orsourceswithsimilarwaterquality)is(are)used

36、orassumedtobetewatersource(s)behindthesedatapoints.Forbluehydrogen,thecoolingrequirementsforCCUSsystemsareincluded.ForPEMandATR,availabledatapointsarelimitedsincethesetechnologiesarerelativelynew-thusthemuchsmallerrangesofvalues.ATR=autothermalreforming;CCUS=carboncapture,utilisationandstorage;kg=ki

37、logramme;L=litre;PEM=protonexchangemembrane;SMR=steammethanereforming.Coalgasificationisbyfarthemostwaterintensiveofavailabletechnologies;itwouldbeabout60%moreintensiveifequippedwithCCUS.Coalgasificationhasawaterwithdrawalrequirementofabout50L/kgandconsumes31Lkgzonaverage-roughlytwicePEM,swaterwithd

38、rawalandconsumptionrequirements.EquippedwithCCUSzcoalgasificationswithdrawalaswellasconsumptionrequirementscouldfurtherincreaseto80.2and49.4Lkgzrespectively.Acoalgasificationhydrogenplantproducing237kilotonnes(kt)ofhydrogenperyearandequippedwithCCUSwouldwithdrawabout19millioncubicmetres(m3)ofwateran

39、nually;thisvolumeofwatercouldsupporthalfthewaterdemandofthecityofLondonforanentireyear.Waterisrequiredasaninputforproductionandasacoolingmediumforalltypesofhydrogenproduction.Dependingonthetechnology,theshareofwithdrawalforcoolingcanrangefrom14%to92%.Theshareofwaterwithdrawalforcoolingisthelowestfor

40、greyhydrogenproduction,atabout14%.Greenandbrownhydrogenssharesare56%and52%zrespectively.BluehydrogenproductionrequiresmorewaterforclingzduetothesignificantwaterrequirementsofCCUSsystemsforheattransfer.Coolingcanaccountforupto92%ofthetotalwithdrawalrequirementofbluehydrogen,accordingtodatafromtheNati

41、onalEnergyTechnologyLaboratoryintheUnitedStates.However,moreevidenceisneededbeforeageneralproduction-clingratiocanbedeterminedwithoutdispute.Forevery1percentagepointincreaseinelectrolysisefficiency,thewaterwithdrawalaswellasconsumptionrequirementsofgreenhydrogenproductionlessenbyabout2%.Thisisprimar

42、ilybecause,forthesametypeofhydrogenproductiontechnology,themoreenergyefficientthesystemiszthelesswasteheatneedstobetransferred;thismeanslesswaterisrequiredforcling.Whatwillbetheglobalimpactofcleanhydrogen?Thisreportpresentsacomprehensiveanalysisofthewaterftprintandrisksassociatedwithcurrentandprojec

43、tedfutureglobalhydrogenproduction.TheanalysisisbasedonIRENAzs1.5Scenario,whichprojectssubstantialgrowthinhydrogenproductionby2050.Today,about2.2billionm3offreshwateriswithdrawnforglobalhydrogenproductioneveryyear;thisaccountsfor0.6%oftheenergysectorstotalfreshwaterwithdrawal.AsillustratedinFigureS2z

44、greyhydrogenproductionaccountsforabout59%oftheglobalfreshwaterwithdrawalforhydrogenproduction,brownhydrogen40%,andtherestisfromgreenandbluehydrogen.Freshwaterwithdrawalsforglobalhydrogenproductioncouldmorethantripleby2040andincreasesix-foldby2050zcomparedwithtoday.Drivenbythesignificantexpansionofgl

45、obaldemandforhydrogen,thetotalfreshwaterwithdrawalrequiredbyglobalhydrogenproductionisprojectedtobeabout7.3billionm3by2040and12.1billionm3by2050zfactoringintechnologyadvancements.Hydrogenproductionsshareoftotalfreshwaterwithdrawnfortheenergysectorcouldrisefrom0.6%todayto2.4%by2040.figureS2Currentand

46、projectedfreshwaterwithdrawalforglobalhydrogenproduction,bypathway14(E uoq)QMep M 拈MqsalJ-BnUun-basedandseawater-cledhydrogenproduction(e.intheGCCcountries)isexduded.BlueH2includesSMR-CCUS,ATR-CCUSandcoal-CCUS,withtheshareOfATR-CCUSassumedtograduallyineaseto75%by2050.COoIinginblueH2productionindudes

47、theclingdemandduetoCCUSsystems.GreenH2indudesbothalkalineandPEMelectrolysiswiththeshareofPEMelectrolysisassumedtograduallyineaseto75%by2050.Moderategradualincreasesinelectrolysisefficiency(7.5percentagepointsforalkalineelectrolysisand4.5percentagepointsforPEM-electrolysisoverthemingthreedecades)areassumed.Forcalculationpurposes,theclingandproductionsharesofblueH2inCase2fromLewisetal.(2022)areapplied.ATR=autothermalreforming;CCUS=carboncapture,utilisationands

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号