国际清算银行-金融科技与银行信贷:他们对货币政策有何反应?(英)-2023.12_市场营销策划_重点.docx

上传人:夺命阿水 文档编号:1106893 上传时间:2024-03-15 格式:DOCX 页数:20 大小:319.52KB
返回 下载 相关 举报
国际清算银行-金融科技与银行信贷:他们对货币政策有何反应?(英)-2023.12_市场营销策划_重点.docx_第1页
第1页 / 共20页
国际清算银行-金融科技与银行信贷:他们对货币政策有何反应?(英)-2023.12_市场营销策划_重点.docx_第2页
第2页 / 共20页
国际清算银行-金融科技与银行信贷:他们对货币政策有何反应?(英)-2023.12_市场营销策划_重点.docx_第3页
第3页 / 共20页
国际清算银行-金融科技与银行信贷:他们对货币政策有何反应?(英)-2023.12_市场营销策划_重点.docx_第4页
第4页 / 共20页
国际清算银行-金融科技与银行信贷:他们对货币政策有何反应?(英)-2023.12_市场营销策划_重点.docx_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《国际清算银行-金融科技与银行信贷:他们对货币政策有何反应?(英)-2023.12_市场营销策划_重点.docx》由会员分享,可在线阅读,更多相关《国际清算银行-金融科技与银行信贷:他们对货币政策有何反应?(英)-2023.12_市场营销策划_重点.docx(20页珍藏版)》请在课桌文档上搜索。

1、BISBISWorkingPapersNo1157Fintechvsbankcredit:Howdotheyreacttomonetarypolicy?byGiulioCornelli,FiorellaDeFiore,LeonardoGambacortaandCristinaManeaMonetaryandEconomicDepartmentDecember2023JELclassification:D22,G31zR30Keywords:fintechcredit,monetarypolicy,PVAR,collateralchannelBISWorkingPapersarewrittenb

2、ymembersoftheMonetaryandEconomicDepartmentoftheBankforInternationalSettlements,andfromtimetotimebyothereconomists,andarepublishedbytheBank.ThepapersareonSUtyeCtSoftopicalinterestandaretechnicalincharacter.TheviewsexpressedinthemarethoseoftheirauthorsandnotnecessarilytheviewsoftheBIS.Thispublicationi

3、savailableontheBISwebsite(www.bis.org).BankforInternationalSettlements2023.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.ISSN1020-0959(print)ISSN1682-7678(online)Fintechvsbankcredit:howdotheyreacttomonetarypolicy?GiulioCorneIIi,FiorellaDeFiore,LeonardoGambacorta

4、andCristinaManea*AbstractFintechcredit,whichincludespeer-to-peerandmarketplacelendingaswellaslendingfacilitatedbymajortechnologyfirms,iswitnessingrapidgrowthworldwide.However,itsresponsivenesstomonetarypolicyshiftsremainslargelyunexplored.Thisstudyemploysanovelcreditdatasetspanning19countriesfrom200

5、5to2020andconductsaPVARanalysistoshedsomelightonthedifferentreactionoffintechandbankcredittochangesinpolicyrates.Themainresultisthatfintechcreditshowsalower(evennon-significant)sensitivitytomonetarypolicyshocksincomparisontotraditionalbankcredit.Giventhestillmarginal-althoughfastgrowing-macroeconomi

6、csignificanceoffintechcredit,itscontributioninexplainingthevariabilityofrealGDPislessthan2%,againstaroundonequarterforbankcredit.JELCodes:D22,G31,R30.Keywords:fintechcredit,monetarypolicy,PVAR,collateralchannel.GiulioCornelli(email:giulio.cornellibis.org)iswiththeBankforInternationalSettlements(BIS)

7、andtheUniversityofZurich(UZH).Correspondingauthor.FiorellaDeFiore(email:fiorella.defiorebis.org)andLeonardoGambacorta(email:Ieonardo.gambacortabis.org)arewiththeBISandresearchfellowsofCEPR.CristinaManea(CriStina.maneabis.org)iswiththeBIS.TheauthorsthankMaxCroce,MarcoJacopoLombardiandoneanonymousrefe

8、reeforhelpfulcomments.TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyrepresentthoseoftheBankforInternationalSettlements,UZHandCEPR.1. IntroductionCreditmarketsareundergoingaprofoundtransformation.Whiletraditionallenderssuchasbanksandcreditunionscontinuetobetheprimarysourceoffinanceinmosteco

9、nomies,withcapitalmarketsalsoplayinganimportantroleinsomecases,newintermediarieshavebeguntomaketheirmark.Inparticular,digitallendingmodelssuchaspeer-to-peerandmarketplacelendinghaveseensignificantgrowthinnumerouseconomiesoverthepastdecade(Claessensetal.,2018).Furthermore,inmorerecentyears,severalpro

10、minenttechnology-drivencompanies(oftenreferredas,bigtechs/z)haveventuredintocreditmarkets,providingloanstotheirclientseitherdirectlyorinpartnershipwithfinancialinstitutions(Frostetal.2019).Thesenewtypesofcredit,enabledbyonlineplatformsandbigdataforassessingcreditworthinessarecommonlytermed,fintechcr

11、edit. Fintech credit encompasses various innovative credit forms. This includes digital lending models such as peer- to-peer (P2P)marketplace lending and invoice trading, all facilitated by online platforms rather than traditional banks or lending institutions. Another notable form is wbig tech cred

12、it1, which is credit extended either directly or in partnership with financial institutions by large firms primarily engaged in the technology sector. For simplicity in this paper we group these two alternative finance forms together, referring to both collectively as wfintech credit.Fintechcreditis

13、witnessingrapidglobalexpansion,achievingmacroeconomicsignificanceinmanycountriesincludingChina,Korea,Malaysia,andKenyawhereitreachesupto5%oftotalcredit(Cornellietal.r2023).Inlightofthistrend,itbecomesessentialtoinvestigatehowfintechcreditrespondstomonetarypolicyandtoidentifythekeydifferencesinitsmon

14、etarytransmissionmechanismrelativetotraditionalbankcredit. See De Fiore et al (2023) for a model-based analysis of the relative impact of big tech and bank credit on the transmission of monetary policy.Threeprimarydifferencesbetweenfintechandbankcreditcouldinfluencetheirresponsestoamonetarypolicysho

15、ck.First,ratherthanrelyingonphysicalcollateraltoaddressagencyissuesbetweenlendersandborrowers,thebusinessmodeloffintechcreditisgroundedindata(Gambacortaetal.,2019).Asaresult,fintechcreditresponsivenesstoassetpricefluctuationstriggeredbyshiftsinmonetarypolicyislower(Gambacortaetal.,2022).Second,finte

16、chplatformsmayoperatewithinregulatoryframeworksdistinctfromthosegoverningtraditionalbanks,enablingthemtoextendcreditundervariedterms.Moreover,thecompetitivedynamicsbetweenfintechplatformsandconventionalbankscanshapecreditofferingsandtheirreactionstomonetarypolicyindifferentways.Astraditionalbankcred

17、itbecomesmoreconstrainedduetomonetarypolicytightening,businessescouldreaddresstheirneedstowardsfintechplatforms(Hasanetal.,2023).Third,thesuperiormonitoringandscreeningcapabilitiesofbigtechlendersrendertheircreditscoringhighlysensitivetochangesinfirms1transactionvolumesandnetworkscores,especiallyfor

18、onlinefirms(Gambacortaetal.2022).Therefore,anyalterationinmonetarypolicyaffectinggeneralbusinessconditionscouldswiftlyinfluencecreditsupply.Inparticular,whenmonetarypolicyisrelaxed,bigtechlendersaremorelikelytoestablishnewlendingrelationshipswithfirmsthantheirtraditionalcounterparts(Huangetal”2023).

19、Thissuggeststhatbigtechcreditmightfacilitatethetransmissionofmonetarypolicyviatheextensivemarginrelativetotraditionalbankloans.Insummary,whilethefirsttwodifferencessuggestadiminishedeffectivenessofmonetarypolicythroughfintechcredit,thelatterwouldimplytheopposite.Toshedsomelightonwhichoftheseeffectsd

20、ominates,thispaperutilisesnewdatafor19countriesovertheperiod2005-2020(Cornellietal,2023).WeconductaPanelVAR(PVAR)analysistoassesstheresponsesoffintechandbankcredittoamonetarypolicyshock.Ourprimaryfindingisthatfintechcreditexhibitsareduced(evennon-significant)responsivenesstomonetarypolicyshockscompa

21、redtobankcredit.2. DatadescriptionThePVARanalysisisbasedonannualdatafor19countriesovertheperiod2005to2020. CountriesZgeographical areas included in the analysis are: Australia, Brazil, Canada, Chile, China, Euro area, Indonesia, Israel, India, Japan, Korea, Mexico, Russia4 South Africa, Switzerland,

22、 Thailand, Turkey, United Kingdom and United States. The behaviour of fintech and bank credit may vary between advanced economies (AEs) and emerging market economies (EMEs). However, due to the limited number of observations available (96 for AEs and 150 for EMEs), we are unable to perform a sample

23、split analysis for the two groups of countries.Theinteractionbetweenmonetarypolicy,thecreditmarketandeconomicactivityisanalysedbymeansofthefollowingvariables:i)thelogarithmofthepropertypriceindex(Pk);ii)thelogarithmofrealGDP(V);iii)thelogarithmoftheconsumerpriceindex(p);iv)thelogarithmofbanklending(

24、);v)thelogarithmoffintechcredit(F);vi)themonetarypolicyshortterminterestrate(i).ThepropertypriceindexandthebankcreditdataarecompiledbytheBIS.TherealGDPandtheCPIcomefromtheIMF,WorldEconomicOutlook.Theshorttermratehasbeenobtainedfromnationalcentralbanks,Based on data availability, we replace the short

25、-term rate with the shadow rate from UKmfa, UK Limited. For more details see Krippner (2013).whilefintechcreditcomesfromthenewdatasetdevelopedinCornellietal(2023).Toavoidtheproblemofspuriouscorrelations,wehaveconsideredaPVARinfirstdifferences.Thesummarystatisticsofallthevariablesusedintheanalysisare

26、reportedinTable1.Summarystatistics1Table1ObservationsMeanStddevMinMaxLn(propertypriceindex)2740.050.05-0.020.18Ln(realGDP)3040.010.09-0.160.16Ln(CPI)3040.030.030.000.10Ln(bankcredit)3040.070.13-0320.46Ln(fintechcredit)3040.380.73-0.222.43shorttermrate3040.231.56-9.507.771DataWinsorisedatthe5thand95t

27、hpercentiles.Sources:Cornellietal(2023);BIS;IMF;nationaldata;authorscalculations.Table2belowreportsunitrootPhillips-Perrontestsforallvariablesinfirstdifferences.Thenullhypothesisthatthevariablescontainunitrootsisalwayslargelyrejected.Unitroottests1Table2Ln(propertypriceindex)Ln(realGDP)Ln(fintechcre

28、dit)shorttermrateeU-,-5b方P-valueStatP-valueP-valueStatP-value)P-valueco方P-valueInversechi-squared(38)81.70.0013430.00104.60.00204.70.0C100.10.0C203.50.0CInversenormal-4.00.00-730.00-5.80.00-10.30.0C-5.80.0C-10.80.0CInverselogitt(99)-4.10.00-820.00-6.10.00-12.80.0C-6.00.0C-12.90.0CModifiedinvchi-squa

29、red5.00.0011.00.007.60.0019.10.0C7.10.0C19.00.0C1BasedonPhillips-Perrontests.Thenullhypothesisisthatallpanelscontainunitroots.Thesampleincludes19countriesovertheperiod2005-2020.DataWinsorisedatthe5thand95thpercentiles.Sources:Authorscalculations.3. ThePVARModelWemodelasix-variableVARsystem;allthevar

30、iables,thatarefoundtobe1(0),aretreatedasendogenous.Therefore,thestartingpointofthemultivariateanalysisis:2ct=c+Zctk+ctC=I,Nt=lf,TklVVWN(ON)(1)wherezct=pk,Y,p,L,F,iandctisavectorofresiduals.We treat cross-sectional shocks as independent, and we do not model the transmission across borders explicitly.

31、 This assumption is aligned with the modelling approach where each countrys shocks are not directly influenced by shocks in other countries contemporaneously. This simplification ensures the models tractability and interpretability, especially given the focus on the effects on fintech and bank credi

32、t. The constraint of limited data, especially the time dimensions, further restricts our ability to adopt more sophisticated modelling techniques that could potentially capture cross-country interdependencies. For instance, methods like Global VAR (GVAR) or other multi-country econometric models whi

33、ch are adept at capturing such dynamics require a more extensive dataset as well as additional identifying assumptions to yield reliable estimates. For a discussion of challenges and potential biases introduced by the absence of cross-country interdependencies in PVAR models see Canova and Ciccarell

34、i (2013).Thedeterministicpartofthemodelincludescountryfixedeffects(c),whilethenumberoflags(/)issetto1.TheoptimallagselectioncriteriafollowsAndrewsandLu(2001).Table3belowpresentstheresultsfromthefirst-,second-,third-,andfourth-orderPVARmodelsusingthefirstfourlagsoftheendogenousvariablesasinstruments.

35、Forthefourth-orderpanelVARmodel,onlythecoefficientofdetermination(CD)iscalculatedbecausethemodelisjust-identified.Thefirst-orderPVARisthepreferredmodelbecauseithasthesmallestMBIC,MAIC,andMQIC.Foralagequalto1alsotheCDisminimized.While we also want to minimize Hansen,s J statistic, it does not correct

36、 for the degrees of freedom in the model like the MMSC by Andrews and Lu (2001).Thechoiceofthedeterministiccomponent(constantvstrend)hasbeenverifiedbytestingthejointhypothesisofboththerankorderandthedeterministiccomponent(so-calledPantulaprinciple).BeforeperformingtestsonthePVARmodel,wehaveanalysedG

37、rangercausalityamongthezctvariables,focusingonfintechcreditinparticular.Grangertestsverifyifthevariableisusefulinpredictingthevaluesofanothervariabley,conditionalonpastvaluesofy,thatis,whether%,Granger-causes,y(Granger1969).ThiscanbeimplementedasseparateWaldtestswiththenullhypothesisthatthecoefficie

38、ntsonallthelagsofanendogenousvariablearejointlyequaltozero;thus,thecoefficientsmaybeexcludedinanequationofthePVARmodel.LagselectionTable3LagsCDJJpvalueMBICMAICMQIC10.86133.590.05-442.86-92.41-228.1620.9756.130.92-328.17-87.87-185.0330.9822.230.96-169.92-49.77-983540.961Thesampleincludes19countriesov

39、ertheperiod2005-2020.DataWinsorisedatthe5thand95thpercentiles.Sources:Cornellietal(2023);BIS;nationaldata;Authorscalculations.Table4belowshowsthetestonwhetherthecoefficientsonthelagsofeachvariablearezero.Forexample,theteststhatthechangesinbankcreditormonetarypolicyinterestratesdonotGranger-causethec

40、hangeinthelogarithmofthepropertypriceindexarerejectedatthe95%confidencelevel.Interestingly,whilefintechcreditdoesnotGrangercausethepropertypriceindex,itGrangercausesCPIprices,bankcreditandtheshorttermrate.FintechcreditmarginallyGrangercausesrealGDP(p-value0.13)alsoinconsiderationofitsstilllimitedmac

41、roeconomicimpact.PVARGrangertestTable4Equation/excludedLn(propertypriceindex)Ln(realGDP)Ln(CPI)Ln(bankcredit)Ln(fintechcredit)shorttermrate(N毛p-value(N写p-value(N毛p-value(NWp-valueOl毛王p-value(N毛*gQ.Ln(propertypriceindex)0.010.9113.210.001.010.320.110.7713.410.00Ln(realGDP)0.110.710.010.970.410.540.61

42、0.452.510.12Ln(CPI)2.510.126.910.016.910.011.010321.010.32Ln(bankcredit)7.110.01,109.910.001.310.262.510.121.610.20Ln(fintechcredit)0.010.892.310.133.110.086.110.013.410.07shorttermrate4.310.048.210.001.010.326.410.010.210.64All26350.00I145.650.0027.150.0028.450.004.350.5018.450.00Thenullhypothesiso

43、fthetestisthattheexcludedvariabledoesnotGranger-causetheequationvariable.1Thesampleincludes19countriesovertheperiod2005-2020.DataWinsorisedatthe5thand95thpercentiles.Sources:Authors*calculations.AftercheckingforthestabilityofthePVAR(seeFigureAlintheAppendix),wecalculateorthogonalizedImpulseResponseF

44、unctions(IRFs)andForecastErrorVarianceDecompositions(FEVDs).OrthogonalizedIRFsandFEVDsmaychangedependingonhowtheendogenousvariablesareorderedintheCholeskydecomposition.Specifically,theorderingconstrainsthetimingoftheresponses:shocksonvariablesthatcomeearlierintheorderingwillaffectsubsequentvariables

45、contemporaneously,whileshocksonvariablesthatcomelaterintheorderingwillaffectonlythepreviousvariableswithalagofoneperiod.BecausetheorderingofvariablesislikelytoaffectorthogonalizedIRFsandtheinterpretationoftheresults,inaccordancewiththetheory,weorderthevariablesasfollows:pk,Y,p,L,F,i.Theinterestratei

46、sorderedlast,soitreactstoallvariableswithinoneyear.ThischoiceisguidedbytheliteraturethatanalysestheeffectivenessofmonetarypolicyshocksusingVARmodels.Graph1reportstheIRFs.ConfidenceintervalsarecalculatedusingMonteCarlosimulationwithp-valuebandsof90%.TheIRFssuggestthatwhileamonetarytighteninghasanegat

47、iveeffectonassetpricesandbankcredit,fintechcreditremainsunaffected.A1.1percentagepointincreaseinthemonetarypolicyrate(topleftpanel)isassociatedwitha0.5percentdeclineinassetpricesafterthefirstyearand0.4inthesecondyear(bottomrightpanel).Theeffectbecomesstatisticallynotdifferentfromzerofromthethirdyearonwards,whenalsotheinterestratereturnstowardsthebaseline.Bankcreditdropssignificantlyasaneffectofthemonetarypolic

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号