《毕业设计(论文)-升运链式马铃薯播种器的设计(含全套CAD图纸) .doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)-升运链式马铃薯播种器的设计(含全套CAD图纸) .doc(13页珍藏版)》请在课桌文档上搜索。
1、1 前言1.1 课题的意义马铃薯在我国得到广泛地栽种,是一种高蛋白农作物。2007年我国马铃薯种植面积约8000万亩,总产量超过6800万吨,占世界总产量的22%左右1。单从总产量来说我国已经是世界第一,但是单产量却远远低于欧美和澳洲的水平。例如,2003年,我国马铃薯的单产量是每公顷14842公斤,低于世界平均水平每公顷16448 公斤,还不到单产量最大的国家新西兰每公顷44248 公斤的三分之一2。我国马铃薯种植单产量很低这已是不争的事实,因此,我国应该把提高马铃薯的单产作为目前提高马铃薯产量的首要任务。提高马铃薯单产量的措施除了改进马铃薯的种植方式外,更应该提高机械化生产水平。提高单产量
2、,首要任务就是提高机械化生产水平。当前,除少部分地区已经实现马铃薯机械化或半机械化种植以外,我国大部分的马铃薯种植方式一直停留在传统种植的水平上,传统的种植方式主要依靠人力和畜力进行生产,从开沟到覆土镇压,整个过程劳动强度大,生产效率低,种植效果也远远低于机械化种植水平;而且我国地域广阔,拥有多种地型,因此需要的播种器的机型也相对不一,设计出具有较强适应性的播种器将成为未来播种器发展的必然趋势;播种器的通用性也是一个不可忽略的重要因素,提高播种器的通用性有助于提高播种器的使用性能,使得播种器得到充分的利用。虽然从当前的情况来看,我国在播种器这块领域还不能一下子缩小同国外发达国家之间的差距,但是
3、正在将这种差距正在不断缩小3。1.2 国内外马铃薯播种器的发展1.2.1 国外马铃薯播种器的发展第二次世界大战以后,欧美的许多发达国家先后完成了由传统农业向现代农业的过度和转化,经过几十年不断地发展,其农业机械化水平已经相当完善,现在正朝着大型化、智能化、精量化以及多功能联合型方向发展4。在欧美的发达国家中,马铃薯播种器经过几十年的发展和应用,其技术水平应经达到了相当完善的程度,无论是工作速度、生产效率、工作性能、播种质量以及播种器具的通用性和适应性上都做得比较好。这对减少播种过程中的漏种率、种子损伤率和提高单产量都有很大的促进作用。现在一些发达国家正把不断更新播种器的工作原理、尽量完善其结构
4、、延长机具使用寿命、降低制造价格和维护费用的同时提高其工作效率以及提高播种器的通用性和适应性作为未来更先进的播种器研制的方向4。1.2.2 我国马铃薯播种器的发展近年来,随着马铃薯在我国的大量种植,研发并推广与马铃薯生产相适应机械取得了很大的进展 ,尤其是马铃薯种植机械,尽管我国机械研制和生产水平和欧美发达国家还有一定的差距,但是随着我国科研人员的努力,这个差距正在不断地缩小。各种先进的马铃薯播种器不断问世,并在全国进行大量地推广应用5。 排种装置仍然是播种器最为关键的部件,先进的排种器和排种原理对播种器的效率的提高有着很重要的作用,迄今为止,我国学者几乎涉猎了世界上所有的排种器:如外槽轮式排
5、种器、离心式排种器、各种圆盘式排种器等,而具有我国独创特色的窝眼轮式排种器、纹盘式排种器、锥盘式精量排种器也获得了广泛的应用,但是在马铃薯播种器上,先进的排种器和排种方式依然是制约播种器效率的瓶颈6。因此在已经解决种子和播种方式的情况下研制相应的播种器显得是关重要。显然,在排种器方面,我国应该朝着气流输送式条播排种器、孔带式精密排种器、气力式精密排种器以及倾斜圆盘指夹式排种器的方向发展。新的排种原理包括气力式排种原理和机械式排种原理也应得到广泛的采用。2 总体设计2.1 主要技术参数(1) 外形尺寸(长宽高):1450mm1100mm950mm(2) 配套动力:12kw(3) 生产效率:10a
6、cre/h(4) 工作幅宽:1100mm(5) 播种方式;平播(6) 播种深度:60150mm (7) 作业行数:2行 (8) 作业行距:400mm(9) 地轮直径:500mm (10) 作业速度:1m/s(11)传动形式:链传动(12)土壤工作部件:锄铲式开沟器(13)排种器:外槽轮式(14)覆土器形式:拖环式(15)镇压轮:复合圆锥式(16)种箱容积:30L2.2 基本结构及工作原理2.2.1 基本结构:该马铃薯播种器预计由机架、开沟器、输种管、输肥管、覆土器、种箱、肥箱、排种器以及镇压轮构成,在机架的前梁上有上、下悬挂架用于与拖拉机连接;种、肥箱侧板固定在机架中间横梁的上方,前边为肥箱,
7、后边为种箱,下边固定排肥、排种装置7。在肥箱前面有一根安装开沟器的梁,通过U型螺栓将开沟器的扁钢锁住,从而可以调节开沟深度,开沟器在横梁上可根据需要进行横向移动来调节行距;机架的后梁用来连接镇压轮。2.2.2 工作原理本机通过上、下悬挂与拖拉机相连,拖拉机前进时输出动力带动播种器工作,作业速度为1m/s。机具工作的动力来源为:行走轮随拖拉机前进转动输出的动力。行走轮随拖拉机前进而转动,由行走轮传递动力,在行走轮轮轴的两端各装一个传动链轮, 通过链条将力矩传给中间传动链轮,再由中间链轮将动力传给排种排肥装置,通常情况下地轮直径较大,工作时不易发生打滑等现象,并且传动可靠。播种器工作时,拖拉机通过
8、动力输出轴将动力传递给行走轮,行走轮上的主动轴将动力传递给中间轴,行走轮随拖拉机前进而转动,通过链条将动力传给施肥、播种器构,排出的化肥和种子经输肥管与输种管进入开沟器,先后进入开好的地沟中,为了避免烧坏种薯,化肥应位于种子下方5 cm 处,覆土器进一步覆盖种沟,镇压轮的圆锥滚筒随即以均匀适当的压力压密种床8。2.3 配套动力的选用根据我国目前所拥有的拖拉机实际情况和对机组所消耗功率的初步估算,拟采用东风-200拖拉机或功率相近的相关拖拉机。东风-200拖拉机的主要参数如下:外形尺寸(cm) 2850x1350x1990功率(KW) 12(14马力)额定转速(r/min) 730驱动型式 前轮
9、驱动离合器形式 干式、双片制动器 环状内胀式发动机与离合 V带理论前进速度(Km/h)如表1:表1 东风-200拖拉机理论前进速度Table1 The therical theoretical exercise speed of Dongfeng-200速度前进:1.251.673.075.386.478.6515.9127.86Km/h后退:1.467.593 传动装置的设计计算3.1 传动路线的确定传动路线要保证总体传动可靠,不影响拖拉机工作。根据整机的结构以及拖拉机的位置来确定传动路线,使马铃薯在工作过程中能满足开沟、播种、施肥和镇压等工作的需要。借鉴相关机型,将传动路线分为两条路线。第
10、一,行走轮随拖拉机的前进而转动,经过链传动将动力传递给中间轴;第二,中间轴将动力分别传递给排种机构和排肥机构的转轴,驱动排种链轮和排肥槽轮转动3.2 传动比的计算行走轮的行驶速度取3.6km/h,换算出来为1m/s。行走轮的直径为500mm,可以通过公式(1)计算得到行走轮轴的转速n1 (1) 式中:v行走轮的行驶速度 d行走轮的直径经计算得 按照设计要求,中间轴的转速与行走轮轴的转速应该相等,因此两轴之间的传动比为1,中间轴的转速为38r/min,排种器的主动轮安装在中间轴上,因此转速也为38r/min。排种器的上、下链轮垂直安放,在工作过程中要求工作平稳,因此两者之间的转速相差不大,链勺的
11、速度要求不超过0.5m/s,最佳的速度为0.5m/s,如果将速度降到0.25m/s左右,相应地应该将原本要求的株距缩小2倍才能不影响排种效率,再结合链轮的要求,最终选取排种器上、下两链轮之间的传动比为1.12。4 排种器的选型设计4.1 种箱结构参数的设计4.1.1 种箱尺寸的确定种箱必需有足够的容量,从而减少加种次数,一般情况下要求播种到了地头才加种。但是种箱容量也不能太大,那样会增加机构的重量,对播种器的的稳定性产生不利的影响,还会影响机组的纵向移动性;种箱必须保证箱壁的倾斜角大于种子的自然休止角,以保证种子能顺利滑落排种器,一般情况下种薯块的自然休止角=2434,这里选择=30。除此以外
12、,种箱还应该坚固耐用,重量轻巧,具有一定的刚性,并具备防水和防潮的能力;种箱要便于加种、卸种和清种,因此该机所选的种箱形状为锥台型(上口直径大,下口直径小),而且上端有防护盖加以保护。4.1.2 种箱容积的计算种箱的容量由播种的行距、株距,播种量和播种距离共同确定。根据以往实验结论:播种器在工作时不宜播完种子箱内的全部种薯,应该保留至少10%的种子余量,避免箱内种子太少而影响播种的质量。预先设定该地块的长度D=1000m,播种器往返一次加一次种子。其种箱容积V可用公式(2)确定: V=1.1 LBNmax/667 (2) L装满一箱种子所能播种的最远距离。最少应等于一个往返行程,即地块长度的两
13、倍(m),取L=2000m B工作幅宽(m),此处取B=1100mm Nmax单位面积最大播种量 (kghm2),种薯的株距为120mm,则在100m内需要播种略为833个,每个种子大约重50g,算出Nmax41.65kg种子的单位容积质量(kg/L),1L=1000000cm3 因此单位容积内能容纳尺寸规格为20mm20mm20mm的种薯125个,每个种薯平均重50g,算出来的值大约为7.25kg/L取L2000;B1.1;Nmax41.65; r7.25。 代入公式(2)得:V =20.8433(L) 实际中种箱的容积往往要比设计数值稍微大一些,因此本次设计取种箱的容积为30升。4.2 排
14、种器的选型与计算对马铃薯播种器来说,排种器是其最核心的部件,其性能的优劣将直接影响播种器的播种质量,因此,对排种器的要求是很高的。4.2.1 马铃薯播种器对排种器的性能要求 (1)排种器应该具备较大的排种均匀性和稳定性,能均匀连续地排种,并且能在不同外界条件下作业,其播量要保持稳定,排种要均匀;(2)具有较强的通用性和适应性,播量调节范围大;(3)对种子的损伤率较小,一般要求不超过3%;(4)结构简单,工作可靠,易于制造和维护,调整方便;(5)漏种率和重播率低,皆要求不超过3%。4.2.2 现有排种器的类型和特点排种器种类很多,通常按播种方式分为撒播器、条播排种器和点播排种器三大类。其中应用得
15、最广泛的是外槽轮式排种器,其由排种器盒、排种轴、外槽轮、阻塞轮、花型挡环及清种舌等组成。排种器盒装在种子箱下面,种子通过箱底开口流入盒内。排种轴转动时,外槽轮及花型挡环可防止种子从槽轮两侧流出。虽然这种排种器结构简单、制造容易、使用方便、通用性好、适应性能广,而且国际上已经标准化,但是它也存在不可忽略的局限性,对于马铃薯块茎这样的种子,外槽轮是排种器并不能降低其漏种率和对种子的损伤率,也不能够提高播种的稳定性,因此需要选择一种结构更简单,效率和播种质量更好的排种器,经过对所有可能的排种器(如夹持式,外槽轮是,带轮式等)的比较,最终决定选取升运链式排种器,这种排种器的前身是70年代后期美日等发达
16、国家广泛采用的舀上杯链式排种器10。4.2.3 排种器的选型(1) 升运连式排种器的选型及结构:根据马铃薯种块的特性,该马铃薯播种器决定选用单排式升运链式排种器。其结构如图1: 图1 升运链式排种器Fig1 The labechain dispenser (2)工作原理:行走轮随着播种器的前进而转动,行走轮上的轴作为动力传递轴并通过中间轴将动力传递到排种器的小链轮上,小链轮转动从而带动升运链以一定的速度上升,固定在升运链上的取薯勺每次舀取一个种薯块,并通过上链轮和护种管壁将种薯块运送到输种管里,再经开沟器落到地沟,从而实现播种的过程。(3) 升运链式排种器工作性能的结构参数:根据马铃薯播种器的
17、设计要求和参考有关文献,主要有以下结构参数10:1取薯勺速度v:取薯勺线速度与作业速度成正比,试验表明,当取薯勺速度不超过0.5 m/s时,播种质量较好。当链轮线速度为0.55 m/s 时,作业质量有所下降,即漏播稍有增加,但基本上能满足农业技术的要求。若取薯勺速度大于0.55 m/s 时,作业质量则显著变坏,漏播严重。因此链轮线速度最高作业速度不超过0.5 m/s。2链轮转速n:链轮转速过低,脉动频率低,排种均匀性差;转速过高,又会使伤种率增加的同时加大漏种率。根据马铃薯种子的播种要求,此次设计选用最大转速不超过40r/min的链轮。3链条的工作长度L:链条的长度太大,将会增大两链轮之间的中
18、心距,从而增大输种的距离;长度太短又会造成输种时种薯来不及缓冲而从取薯勺滑落,从而降低了排种的均匀性。因此链条的工作长度应该根据最合适的中心距来选取。一般链条长度在2m左右,种子的升运高度不超过500mm 。4取薯勺的形状:对于单边最大尺寸为20mm的马铃薯种块,取薯勺需要保证种薯块在升运的过程中不要出现滑落的情况,而且背面要光滑,不能伤种;取薯勺要轻,因此取薯勺都是用厚度为1.2mm的铁皮冲压而成。4.2.4 中间轴的设计计算中间所传递的扭矩T=3015789 Nmm,选轴的材料为45(调质),根据参考文献9,取=112 dmin=A0 = 112 = 28.9mm (3)输出轴的最小直径用
19、来安装联轴器,为了使所选轴的直径d1-2与联轴器的孔径相适应,故需同时选取联轴器型号。联轴器的计算转矩Tca=KAT1,考虑转矩变化取KA=1.3 Tca=KAT=1.33.02106Nmm=3926000Nmm (4)按照计算联轴器的转矩选择HL1型联轴器,联轴器的孔径为30mm,故取中间轴的最小直径为30mm。根据轴向定位要求确定轴的各段直径和长度为了满足联轴器的轴向定位要求,轴段的右端需制出一轴肩,故取第二段轴的直径为35mm,左端采用轴段挡圈定位,按轴段直径取挡圈直径为36mm,半联轴器与轴配合的彀孔长度为44mm,为了保证轴段挡圈只压在半联轴器上而不压在轴的端面上,故中间段的长度应比
20、L1略短,取l1-2=42mm;初步选择滚动轴承。因轴承同时受到轴向力与径向力的共同作用,故选单列圆锥滚子轴承9。参照工作要求并根据d2-3=35mm,选取30203型号。其尺寸为dDT174013.25,故取d3-4=40mm;右端滚动轴承采用轴肩定位,定位轴承轴肩高度为4mm取安装链轮的轴段直径d4-5=44mm,齿轮的左端与轴承采用套筒定位,由上以求的齿轮的齿宽为80mm,为了使套筒端面可靠的压紧齿轮,此轴段的长度应略短于齿宽的长度,故取l4-5=78mm,齿轮的右端采用轴肩定位,轴肩高度h0.06d,故取h=2mm,则轴环的直径d5-6=50mm,轴环宽度b1.4h,取l5-6=3mm
21、 轴承端盖的总宽度为10mm.取端盖的外端面与半联轴器右端面间的距离l=15mm,故取l2-3=25mm。取齿轮距箱体内壁之间的距离为8mm,考虑到箱体铸造误差,在确定滚动轴承位置时,应距箱体一定距离s,取s=4mm,已知轴承宽度为13.5mm,所以 l3-4=T+s+a+(80-78)=13.5+4+8+2=27.5mm (5)齿轮,半联轴器采用的周向定位均采用平键连接,按d4-5=25mm查得平键截面9bh=87,键槽的长50mm,同时为了保证齿轮与轴配合有良好的对中性,故选择轮毂与轴的配合为H7/n6,同样半联轴器与轴的连接,选用平键5mm5mm12mm,半联轴器与轴的配合为H7/k6,
22、滚动轴承与轴的定位采用过渡配合来保证,此处选轴的尺寸公差为m6。确定轴上圆角和倒角尺寸9,取轴段倒角为245求轴上载荷:把轴当做简支梁,支点取在轴承中点处,即去轴承宽度的1/2为支撑,由于轴所受的力为空间力系,将作用在轴上的力分解为垂直面和水平面求水平支反力:平衡条件Mc=0:FHN1(59.75+57.75) 388.99117.5=0Fz=0:FHN1FHN2Fr=0FNv1FNv2=194.5N水平面45段的弯矩弯矩图2(b):MH1=194.559.75=11621.4Nmm MHV2=194.557.75=11232.4Nmm求垂直支反力:由平衡条件Mc=0:FNv1(59.75+5
23、7.75) 145.99117.5=0Fy=0:FNv1FNv2Fr=0FNv1FNv2=73N垂直面45段的弯矩图2(c): MV1=7359.75=4361.75Nmm MV2=7357.75=4215.75Nmm计算合成弯矩,画出弯矩图2(d) M1=12412.9Nmm M2=11997.5 Nmm (6) 图2 中间轴的载荷分析图Fig2 Intermediate shaft load analysis diagram 计算危险截面的当量弯矩:由合成弯矩图可知轴的45段为危险截面,去扭矩校正系数为=0.6 MB=3806720 Nmm (7)6) 危险截面的校核: e=9.3MPae
24、w (8) 式中ew是根据轴的材料为45钢,调制处理-1w=60,所以该轴安全。4.2.5 滚子链传动的设计计算选择链轮齿数z1,z2和确定传动比i在上文中已确定了传动比1.12,链轮齿数z1=1910.1 行走轮的设计要求在该播种器中,行走轮不仅起限深作用,而且还是排种、排肥的主动轮。因而在设计时,应该从以下几个方面着手17: (1)具有较大的强度、刚度等机械性能; (2)滑移系数较小,一般不要超过10%,从而提高播种的均匀性;(3)对地表不平性具有较强的适应性,避免在地表高低不平的情况下,出现作为驱动排种器、排肥器的行走轮轮被架空而不转动,造成不排种、肥的问题。10.2 行走轮的结构通常情
25、况下,行走轮直径越大,其转动越容易,从而打滑率越小,因此直径越大播种越均匀。本次设计为了使行走轮的大小与机具空间相协调,特将其直径设计为500mm(行走轮圈外径),宽度为80mm,如图7。10.3 行走轮的安装行走轮安装在地轮轴上,两端各紧挨着链轮,两轮间的距离为400mm。图7 行走轮Fig7 The road wheel10.4 行走轮转速的计算按照设计要求和参考有关资料,该播种器生产率为3.24.1km2/h,幅宽1100mm,因此,机器的行进速度为18: (17)取平均速度为v=1m/s,按照配套拖拉机的结构尺寸和常用播种器的地轮大小,取行走轮直径为500mm,有公式(10-1): (
26、18) 式中 行走轮的速度(m/s); 行走轮轴的角转速(rad/s); n 行走轮的转速(r/s)由公式(18)得n38r/min 行走轮的半径(m);最后求得行走轮速度v1m/s,与上文给出得速度相符合,故此速度满足设计要求。11 结论与建议11.1 结论(1)本设计书较全面的阐述了马铃薯播种器的概况和发展历程,提出了现时存在的问题,并着重分析了总体结构设计及排种器、开沟器和镇压轮的设计思路,提出了马铃薯播种器的总体设计方案。(2)马铃薯播种器与拖拉机挂接使用,可一次性完成开沟、播种、施肥、镇压、覆土等多项工作。(3)在拖拉机与马铃薯播种器的挂接使用中必须注意整个机组工作时的稳定性,以达到
27、机组设计的性能要求,因为直播机是中轴对称的,所以在稳定性的讨论中,最重要的是纵向稳定性的分析。(4)开沟器部分的设计通过比较了解多种相关机型,在原有开沟器的基础上设计了锄铲式开沟器,能实现种肥分施。(5)排种器采用升运链式,排肥器采用外槽轮式。11.2 建议(1)在本次设计过程中,由于理论知识掌握得不够,因此在设计一些装置时往往需要很长的时间和精力,而结果也不大理想(譬如对机组传动装置的分析做得不够),以后将进一步加强这方面的研究,以不断完善马铃薯播种器的基础设计理论。(2)由于条件有限,没有实际的参照机械,因此只能通过书上的图形再结合自己的想法进行设计,因此有的数据只能大体估算(如排种箱体的
28、结构尺寸),不能很准确地确定机具的结构形状、受力情况以及性能指标。(3)在对传动装置进行设计时仍采用的传统的设计方法,虽然有机械设计手册等软件可以应用,但是在今后希望能学到并能使用一些现代设计方法,进行优化设计,使整机性能更稳定。(4)设计时需要理论与实践相结合,应多参考一些有借鉴意义的实际机型。(5)做毕业设计,应尽快着手,要充分理解设计的目的与要求,合理安排时间,制定符合实际的进度表。应该多参阅文献资料和实际相关机型,将设计中出现的问题逐个击破,尽力做到最好。 参考文献1 成大先.机械设计手册(第四版).M化学工业出版社,2002:13-1262 程兴田.播种器械的现状及发展前景.M农机与
29、食品机械,1999:56-673 国委文.播种器的现状及发展趋势.M农业机械化与电气化,2007:143-1524 李宝筏.农业机械学.M中国农业出版社,2003:48-775 李亦清,韩建强.2CM2T型系列马铃薯种植机.M农机与食品机械,1998:24-256 刘天国.2CM马铃薯种植机系列产品的开发与研究.D农村牧区机械化,2000:21-227 马建忠,高海明.马铃薯播种器的改进和推广应用.M新疆农机化,2005:17-208 聂延军,江涛.夹持式马铃薯播种器的探讨.R农村牧区机械化,2007:41-429 濮良贵,纪名刚.机械设计(第七版).M高等教育出版社,2001: 901201
30、0 陶为民.国外农业装备发展趋势.M新农村,2001:471-47411 王广胜,王玉忠.2BSM1型马铃薯施肥播种器的研究.D农机与食品机械,1999:15-1712 王继山.免耕播种器开沟器的分析与研究.N山西农业大学学报.2007:7-1013 王俊安,李翠芳.马铃薯机械化播种技术的试验研究R中国农机化.2006:98-9914 闫建英,贺桂香,张存来.马铃薯生产机械化技术.M山西农机,2004:33-3415 杨涛.手持式播种(施肥).N山西农业大学学报.2006:300-30216 赵满全,戴欣平等.2BSL_2型马铃薯起垄播种器的研制.M中国农机化.2005:52-5517 赵满全
31、,窦卫国等.2BSL_2型马铃薯起垄播种机的研制.N内蒙古农业大学学报.2011:103-10418 H.Buitenwerf,W.B.Hoogmoed,P.Lerink and J.Mller.Assessment of the Behavior of Potato in a Cupbelt Planter. MBiosystems Eigineering.2006: 354119 Jarvis,R.H,D.S.Rogers-Lewis and W.E.Bray. Effect of irregular set spacing on maincrop potatoes. M Experime
32、ntal Husbandry.1976: 2841.20 KACHMANSD.Acternative Measures of Accuracy in Plant Spacing for Planters Using Single Seed Metering.MTranslation of the ASAE.1995: 37137521 Koningdeetal,Koningde,L.Speelman and H.C.P.Vriesde.Size grading of potatoes: development of a new characteristic parameter. M Journal of Agricultural Engineering Research.1994: 11912822 Taoetal,Y.Tao,C.T.Morrow,P.H.Heinemann and H.J.S.Ill.Fourier based separation technique for shape grading of potatoes using machine vision. MTransactions of the ASAE.1995:949957.r13