《方波-三角波发生电路实验报告材料.doc》由会员分享,可在线阅读,更多相关《方波-三角波发生电路实验报告材料.doc(8页珍藏版)》请在课桌文档上搜索。
1、word综合设计实验实验报告方波-三角波发生电路要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP20V 一、方案的提出方案一: 1、由文氏桥振荡产生一个正弦波信号。2、把文氏桥产生的正弦波通过一个过零比拟器从而把正弦波转换成方波。3、把方波信号通过一个积分器。转换成三角波。方案二:1、由滞回比拟器和积分器构成方波三角波产生电路。2、然后通过低通滤波把三角波转换成正弦波信号。方案三:1、由比拟器和积分器构成方波三角波产生电路。2、用折线法把三角波转换成正弦波。二、方案的比拟与确定方
2、案一:文氏桥的振荡原理:正反应RC网络与反应支路构成桥式反应电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。方案二:把滞回比拟器和积分比拟器首尾相接形成正反应闭环系统,就构成三角波发生器和方波发生器。比拟器输出的方波经积分可得到三角波、三角波又触发比拟器自动翻转形成方波,这样即可构成三角波和方波发生器。通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化
3、围很小的情况下使用。然而,指标要求输出频率分别为102HZ、103HZ和104Hz。因此不满足使用低通滤波的条件。放弃方案二。方案三:方波、三角波发生器原理如同方案二。比拟三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程 中,与三角波的差异越来越大即零附近的差异最小,峰值附近差异最大。因此,根据正弦波与三角波的差异,将三角波分成假如干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率围的限制。综合以上三种方案的优缺点,最终选择方案三来完本钱次课程设计。3、 工作原理:1、方波、三角波发生电路原理 2、正弦波发生电路原理折线法是用多段直线逼近正弦波的一种方
4、法。其根本思路是将三角波分成假如干段,分别按不同比例衰减,所获得的波形就近似为正弦波。如下图画出了波形的1/4周期,用四段折线逼近正弦波的情况。图中UImax为输入三角波电压幅值。根据上述思路,可以采用增益自动调节的运算电路实现。利用二极管开关和电阻构成反应通路,随着输入电压的数值不同而改变电路的增益。在t=025段,输出的“正弦波用此段三角波近似二者重合,因此此段放大电路的电压增益为1。由于t=25时,标准正弦波的值为sin250.423,这里uO=uI=25/90UImax0.278UImax,所以,在t=90时,输出的“正弦波的值应为uO=0.278/0.423UImax0.657UIm
5、ax。在t=50时,输入三角波的值为uI=50/90UImax0.556UImax,要求输出电压uO=0.657UImaxsin500.503UImax,可得在2550段,电路的增益应为uO/uI=(0.5030.278)/(0.5560.278)=0.809。在t=70时,输入三角波的值为uI=70/90UImax0.778UImax,要求输出电压uO=0.657UImaxsin700.617UImax,可得在5070段,电路的增益应为uO/uI=(06170.503)/(0.7780.556)=0.514。在t=90时,输入三角波的值为uI=UImax,要求输出电压uO0.657UImax
6、,可得在7090段,电路的增益应为uO/uI=(0.6570.617)/(10.778)=0.180。如下图所示是实现上述思路的反相放大电路。图中二极管D3D5与相应的电阻用于调节输出电压u030时的增益,二极管D6D8与相应的电阻用于调节输出电压u030时的增益。电路的工作原理分析如下。当输入电压uI0.278UImax时,增益为1,要求图中所有二极管均不导通,所以反应电阻Rf=R11。据此可以选定Rf=R11=R6的阻值均为1k。当t=2550时,电压增益为0.809,要求D1导通,如此应满 足:13/11 0.8096 RRR,解出R13=4.236k。由于在t=25这一点,D1开始导通
7、,所以,此时二极管D1正极电位应等于二极管的阈值电压Vth。由图可 得:u03是t=25时输出电压的值,即为0.278UImax。取UImax=10V,Uth=0.7V,如此有 。其余分析如上。需要说明,为使各二极管能够工作在开关状态,对输入三角波的幅度有一定的要求,如果输入三角波的幅度过小,输出电压的值不足以使各二极管依次导通,电路将无常工作,所以上述电路采用比列可调节的比例运算电路U3A模块将输出的三角波的幅值调至10V。4、 实验电路图元件选择: 选择集成运算放大器 由于方波前后沿与用作开关的器件U1A的转换速率SR有关,因此当输出方波的 重复频率较高时,集成运算放大器A1应选用高速运算
8、放大器。集成运算放大器U2B的选择:积分运算电路的积分误差除了与积分电容的质量有关外,主要事集成放大器参数非理想所致。因此为了减小积分误差,应选用输入失调参数VI0、Ii0、Vi0/T、Ii0/T小,开环增益高、输入电阻高,开环带较宽的运算放大器。反相比例运算放大器要求放大不失真。因此选择信噪比低,转换速率SR高的运算放大器。经过芯片资料的查询,TL082双运算放大转换速率SR=14V/us。符合各项指标要求。 选择稳压二极管 稳压二极管Dz的作用是限制和确定方波的幅度,因此要根据设计所要求的方波幅度来选稳压管电压Dz。为了得到对称的方波输出,通常应选用高精度的双向稳压管电阻为1/4W的金属薄
9、膜电阻,电位器为精细电位器。电容为普通瓷片电容与电解电容。5、 仿真与调试 实验仿真结果6、 3D模型7、 实验总结该设计完全满足指标要求。第一:下限频率较高:70hz。原因分析:电位器最大阻值和相关电阻阻值的参数不准确。改良:用阻值精细电位器和电阻。第二:正弦波在10000HZ时,波形已变坏。原因分析:折线法中各电阻阻值不精准,TL082CD不满足参数要求。改良:采用精准电阻,用NE5532代替TL082CD。8、 心得体会“失败乃成功之母。从始时的调试到最后完成课程设计经历了屡次失败。不能半途而废,永不放弃的精神在自己选择的道路上坚持走下去!在这次设计过程中,表现出自己单独设计的能力以与综
10、合运用知识的能力,体会了学以致用。并且从设计中发现自己平时学习的不足和薄弱环节,从而加以弥补。时,这次模拟电子课程设计也让我认识到以前所学知识的不深入,根底不够扎实,以致于这次在设计电路图的时候,需要重复翻阅课本的知识。我深深知道了知识连贯运用的重要性。9、 元件清单元件类型元件序号元件型号数量集成运放U1A,U2B,U3A,U4BTL028CD4稳压管D1,D21N4742A2二极管D3,D4,D5,D6,D7,D81N40076电解电容C1100uF1瓷介电容C2100nF1电位器R8500K1R12100k1金属膜电阻R1,R3,R4,R5,R9,R1010K6R2100K1R72401R6,R111K2R14,R192R13,R202R15,R212R16,R222R17,R236492R18,R2422628 / 8