《2023细胞程序性死亡在骨质疏松症中的研究进展(全文).docx》由会员分享,可在线阅读,更多相关《2023细胞程序性死亡在骨质疏松症中的研究进展(全文).docx(9页珍藏版)》请在课桌文档上搜索。
1、2023细胞程序性死亡在骨质疏松症中的研究进展(全文)摘要骨质疏松症(oste。PoroSiS,OP)是多种病理因素导致的全身性骨代谢疾病。近来年,因高发病率、致残率及尚未明确的发病机制使其成为全球关注的公共健康问题。过去普遍认为细胞凋亡是唯一受调控的细胞死亡方式,细胞坏死不受调控。随着现代分子生物学技术的不断发展,发现细胞坏死亦可被某些基因和蛋白通路调控。凋亡、坏死性凋亡、铁死亡和焦亡等均属于细胞程序性死亡(programmedce1.1.death,PCD),其是生物发育和病理特征的重要组成部分。PCD可影响骨代谢微环境及骨代谢平衡,在OP的发生发展中具有重要作用,笔者就上述细胞程序性死亡
2、方式与OP的相关研究进行综述,以期为OP的防治提供新策略。关键词骨质疏松;细胞凋亡;坏死性凋亡;铁死亡;细胞焦亡正文骨质疏松症(OSteOPOrOSiS,OP)是以骨量低下,骨组织微结构损坏,骨脆性增加,易发生骨折为特征的全身代谢性骨病1。OP与增龄相关,随着人口老龄化进程加快QP已成为影响我国老年人群生活质量、加重社会财政负担的重大公共卫生问题。细胞程序性死亡(programmedce1.1.deathzPCD)包括经典的凋亡(apoptosis)和新近发现的坏死性凋亡(necroptosis铁死亡(ferroptosis焦亡(pyroptosis)等。研究表明,PCD在OP的发生发展中具有
3、重要的作用2-3。在某些因素作用下,PCD的失衡使骨代谢微环境的调节处于紊乱状态,进而造成骨代谢过程中骨形成与骨吸收所处的动态平衡被打破,最终导致OP发生。本文就上述细胞程序性死亡方式与OP的相关研究进行综述,为今后基础研究及临床工作提供更多的参考。1细胞程序性死亡概述早期研究发现细胞受某些基因或蛋白调控造成自然死亡。1964年科学家首次使用PCD来描述昆虫在发育过程中存在细胞自然死亡现象4,Kerr等5定义了凋亡、坏死多种细胞死亡方式。PCD组织内无死亡细胞溶解,无可见的炎症反应,是机体细胞通过信号转导通路主动介导的自发性、程序性死亡方式6,能够被相应的信号通路抑制剂阻断,主要包括细胞凋亡、
4、焦亡、铁死亡、坏死性凋亡等。其中凋亡和焦亡属PCD死亡机制中的半胱氨酸天冬氨酸蛋白酶(caspase)依赖型,坏死性凋亡、铁死亡及其他程序性坏死方式属非caspase依赖型。PCD的紊乱与心血管系统、自身免疫性疾病、肿瘤及退行性疾病的发生紧密相关。因此,细胞程序性死亡使人类对多种疾病的防治机制有了新的研究方向。2细胞程序性死亡与骨质疏松症2.1 细胞凋亡与骨质疏松症凋亡是机体在特定基因或通路调控下,为维持自身内环境稳态而有序引发的细胞死亡过程,主要包括死亡受体(TNFRxFas等)调控的外源性凋亡途径和线粒体调控的内源性凋亡途径7。不同的凋亡途径都须经过CaSPaSe家族成员介导的不可逆有限水
5、解底物的级联放大反应过程作用于底物从而诱导细胞凋亡8。OP是人体在衰老过程中因增龄性氧化应激、雌激素减少引起免疫系统低度活化,从而产生大量炎症介质9,这种机制可能诱发成骨细胞内凋亡加速,破坏骨生理平衡。肿瘤坏死因子受体1(TNFR1)作为广谱表达的细胞膜受体,可与其配体肿瘤坏死因子(TNF-Ct)相互作用介导信号传递,两者结合激活下游基因及复合物的形成介导细胞凋亡口0。活化成骨细胞膜上的死亡受体Fas和TNFR可使成骨细胞发生凋亡11,雌激素可通过热休克蛋白27(HSP27)减少TNF-C(诱导的成骨细胞凋亡,同时经Fas配体途径诱导破骨细胞凋亡进而保护骨骼12-13oOP形成过程中涉及线粒体
6、途径凋亡的信号通路包括PI3KAktxERK5、川K、Wnt-cateninsNF-KB、P38等,各信号通路间交互影响,调节线粒体途径中caspase.Bc1.-2家族蛋白等关键靶点,影响成骨细胞凋亡14。表达于成骨细胞的骨保护素(oste。Protegerin,OPG)可通过阻断核因子KB受体活化因子配体(RANK1.)和RANK的结合,抑制破骨细胞的分化和活性15oOPG可诱导破骨细胞和破骨细胞前体细胞中细胞色素从线粒体中释放,激活caspase-3与caspase-9,使凋亡相关因子(AIF)和线粒体核酸内切酶G(GEndoG)发生核转位,从而诱导凋亡发生16。骨髓线粒体蛋白(OPA)
7、是一种新发现的线粒体跨膜蛋白,OPA的下调通过诱导线粒体ATP产生和抑制P38信号通路来抑制细胞凋亡并改善0P17凋亡在骨代谢微环境中受不同基因或蛋白调节,通过凋亡途径维持成骨细胞和破骨细胞供应速率,纠正细胞数量不平衡,对骨代谢稳态具有重要意义。2.2 坏死性凋亡与骨质疏松症坏死性凋亡是区别于凋亡和坏死的新型细胞死亡模式。既与凋亡相类似,严格遵循细胞内信号通路调控,又具备坏死的形态特征口8。作为非caspase依赖型死亡方式,可在细胞内不存caspase信号转导因子的情况下,通过死亡受体(TNFKTo1.1.样受体、Fasx干扰素受体)与配体结合触发细胞死亡程序19,目前,TNFR介导的坏死性
8、凋亡研究最为深入。当与TNF-成吉合后,死亡受体TNFR1.激活并在胞质端招募下游蛋白分子受体相互作用蛋白激酶1(RIPK1)、肿瘤坏死因子受体相关因子(TRAF2)、肿瘤坏死因子受体相关死亡域蛋白(TRADD)、细胞凋亡抑制蛋白(C1.APs)等信号分子聚集,并在胞膜上形成复合物工20-21z复合物工根据接收的信号刺激对RIPK1进行不同修饰,引起凋亡或坏死性凋亡22。Caspase-8在此过程中扮演重要的角色,当细胞内促死亡蛋白RIPK1募集PrO-CaSPaSe-8、TRADD等形成复合物a时,Caspase-8被激活,RIPK3活化受到抑制,诱导细胞走向凋亡。当Caspase-8缺失或
9、活性减低时促使R1.PK1.去泛素化并与相关死亡结构域蛋白(R1.PK3、FaS)结合形成复合物IIb,招募且磷酸化M1.K1.执行坏死性凋亡。细胞凋亡在骨重塑中起关键作用23,那么坏死性凋亡是否也参与了这一过程。研究发现,去卵巢(OVX)大鼠骨细胞中RIPK1、RIPK3水平较假手术组显著增加24,坏死性骨细胞数量与OVX大鼠中TNF-Ce勺产生呈正相关,TNF-CdI过RIPK1/RIPK3途径调节下游关键信号分子M1.K1.及线粒体分裂调节蛋白(Drp1.),促使骨细胞发生坏死性凋亡,给予特异性坏死性凋亡抑制剂Necrostatin-1(Nec-1)后RPK1.和RIPK3表达显著降低,
10、并在体外抑制TNF-诱导的骨细胞坏死性凋亡,延缓骨组织微结构退变25-26。上述表明,坏死性凋亡加速了雌激素缺乏诱导的OP大鼠骨细胞丢失,Nec-1在减轻骨质流失方面的作用可能与其在雌激素缺乏诱导的OP大鼠模型中抑制TNF-Cd秀导的骨细胞坏死性凋亡有关。此外,Nec-1可通过抑制R1.PK1.RIPK3M1.K1.信号通路中RIPK1的表达减轻糖皮质激素和乙醇诱导的成骨细胞坏死性凋亡,促进骨形成,可见坏死性凋亡在糖皮质激素诱导的OP及酒精性OP的发病机制中亦有重要作用27-28。目前,坏死性凋亡与OP的相关研究尚处于初始阶段,未见CaSPaSe、PIPK3、M1.K1.等中下游因子激活和抑制
11、与OP的相关报道,这为后续研究提供了新的方向。2.3 铁死亡与骨质疏松症铁死亡是铁离子依赖的脂质过氧化物增多导致的细胞死亡形式,Dixon等29报道铁死亡后,铁死亡在细胞代谢过程中的重要作用正在逐步被发掘。在机体的病理变化过程中,当细胞胱氨酸运输蛋白受到抑制(如IKE.Erastin.炎症刺激等),胞内谷胱甘肽的耗尽导致谷胱甘肽过氧化物酶(GPX4)失活,当活性氧(reactiveoxygenspecies,ROS)积累到一定程度可诱发细胞死亡。近年来发现辅酶Q(CoQ)氧化还原酶铁死亡抑制蛋白1(FSP1.)在铁死亡中可与GPX4起相似的作用30,这一研究结果进一步丰富了对铁死亡机制的认识。
12、铁代谢广泛参与骨的生长和生产,在OP发生的病理变化过程中,成骨细胞内铁蛋白的磷酸化过程是通过抑制GPX4和XC-系统,导致半胱氨酸代谢的破坏和脂质过氧化的增强,过度活跃的Fenton反应产生大量ROS,导致成骨细胞死亡,进而造成骨代谢过程中骨形成与骨吸收动态平衡被破坏,最终形成0P31.众所周知,长期大剂量类固醇治疗会改变抗氧化能力,降低成骨细胞的活力和功能,导致骨质疏松和骨坏死发生。研究表明,在大剂量糖皮质激素诱导的股骨头坏死过程中,糖皮质激素可能参与了破坏GPX4,引起成骨细胞、破骨细胞、软骨细胞和骨髓间充质干细胞中氧化应激的变化,推测类固醇激素可能诱发骨重建相关细胞的铁依赖性或激活铁依赖
13、性信号通路,若能逆转铁依赖性通路的激活,可防止这些细胞遭受死亡或损伤32。由血管内皮细胞分泌的外泌体(EC-Exos)可通过抑制铁蛋白吞噬依赖性铁死亡,逆转糖皮质激素诱导的成骨细胞成骨抑制以拮抗OP的发生33。线粒体铁蛋白(FtMt)是一种在线粒体中储存铁离子并拦截有毒亚铁离子的蛋白质,Wang等34通过慢病毒沉默及过表达FtMt,观察了其对铁死亡和成骨细胞功能的影响,结果表明FtMt的过表达降低了高糖条件下成骨细胞的铁死亡,而沉默的FtMt通过ROS/PINKVParkin通路诱导线粒体自噬,进一步激活并增加成骨细胞中铁死亡,由此发现了FtMt通过减少过量亚铁离子引起的氧化应激来抑制成骨细胞
14、中铁死亡的发生。铁死亡作为一种重要的细胞代谢过程,在代谢微环境中受不同信号及物质的精细调节,GPX4是其经典的调节途径,在OP低度氧化应激、雌激素减少病理变化过程中,成骨细胞内GPX4参与铁代谢途径调节铁死亡,进而保持成骨细胞内环境的稳态平衡,减少成骨细胞的死亡,对骨代谢平衡具有重要的作用。2.4 细胞焦亡与骨质疏松症细胞焦亡是由Gasdermin介导的以细胞胀大至膜破裂,导致内容物释放引起强烈的炎症反应。当机体发生病变时,促使炎症小体形成,被激活的Caspase切割GSDMs蛋白释放出其N端结构域,GSDMD-N通过成孔活性介导细胞焦亡35(图21Shi等36研究发现GSDMD只存在于细胞焦
15、亡的途径中,GSDME在Caspase-3的切割下能将TNF-Oi秀导的细胞凋亡转向细胞焦亡37。由Gasdermin介导的细胞焦亡对于年龄因素、雌激素缺乏、高血糖、免疫等引发的骨质疏松症的骨重建有不利影响38,其对成骨细胞的分化及增殖的详细机制尚不清楚,但在此过程中均有炎症因子的参与39,炎症因子被细胞识别后,能被Caspase-1介导并活化,通过复杂的调控机制发生细胞焦亡过程,细胞焦亡反过来亦会触发炎症小体,通过促进受损伤的免疫细胞死亡来调节骨细胞稳态40。图片阿仑瞬酸盐(A1.N)是一种含氮双瞬酸盐(NBP)的抗骨质疏松药物,其在抗OP的同时,又有引起颌骨坏死的不良反应,Tamai等41
16、在研究中发现,NBP在体内外均能诱导成骨细胞、破骨细胞死亡,这种死亡是细胞内Nod样受体家族N1.RP3被激活并表达,而N1.RP3炎症小体的异常激活不仅会产生炎症,同时通过上调Caspase-1和gasderminD(GSDMD)的表达导致成骨细胞的焦亡和功能障碍,活化的Caspase-1将底物蛋白GSDMD切割为GSDMD-N,进而介导了颌骨中成骨细胞焦亡。Cheng等42在研究急性根尖牙周炎(AP)时发现,服用VX-765后牙槽骨的骨丢失减少,这是VX765通过抑制Caspase-1xI1.-1s单核细胞趋化蛋白-1(MCP-1XI1.-6和I1.-8等的表达,从而降低了GSDMD的表达
17、,最终抑制了牙槽骨中成骨细胞的焦亡。Yang等43研究发现,高糖可通过CaSPaSe-IGSDMDI1.-1途径激活糖尿病患者牙槽骨的成骨细胞焦亡,进而抑制牙槽骨成骨细胞的增殖和分化,这为糖尿病患者牙槽骨疾病的临床治疗及骨代谢提供理论依据。在OP引起骨代谢失衡的低度氧化应激、雌激素减少病理过程中,通过Caspase-1细胞焦亡通路和Caspase-4/5/11细胞焦亡通路对底物蛋白GSDMD进行激活,进而调控成骨细胞焦亡,对骨代谢平衡具有重要的作用。3细胞程序性死亡交互影响与骨质疏松症尽管凋亡、坏死性凋亡、铁死亡及焦亡之间的信号转导通路不同,但它们并非是平行、没有重叠的,这些不同细胞死亡途径间
18、紧密联系且相互调节,存在着d。SSta1.k的物质基础。如细胞在TNF及氧化因子的作用下促使线粒体释放凋亡因子诱导细胞发生凋亡,当Caspase-8被抑制又可引发细胞坏死性凋亡44,细胞中存在的GSDME蛋白又会使细胞从凋亡迅速转向焦亡45。凋亡还能转换为铁死亡,Yuan等46研究发现,铁积累可抑制骨髓间充质干细胞(MSCs)的数量,提高MSCs细胞ROS水平和氧化酶4(N0X4)蛋白表达,通过Caspase-3诱导MSCs凋亡导致骨质流失,1.iu等47发现铁积累通过XISTmiR-758-3pcaspase3轴调节成骨细胞凋亡。Tian等48发现ROS在调节成骨细胞中铁过载诱导的坏死性凋亡
19、中起关键作用,RIPK1RIPK3M1.K1.是铁超载在体外诱导成骨细胞坏死性凋亡的关键通路。此外,铁离子介导的铁死亡参与细胞焦亡的诱导过程。ZhoU等49研究显示,铁离子和ROS诱导药物装基富-间-氯苯月井共同处理黑色素瘤细胞引起细胞ROS水平显著升高,通过ROS-Tom20-Caspase3-GSDME信号通路导致细胞发生焦亡。Tian等50用不同浓度的铁离子处理MC3T3-E1成骨细胞后,检测到成骨细胞内不稳定铁水平的升高并伴随有ROS的产生及Caspase-3的活化,而Caspase-3的活化可切割GSDME将TNF-C(诱导的细胞凋亡转换为细胞焦亡51。铁离子不仅介导铁死亡,还能诱导
20、细胞焦亡,GPX4信号与GSDMD信号分别是引发铁死亡和细胞焦亡的重要物质基础,那么在OP病程中,也必然存在着过度的成骨细胞铁死亡和焦亡,进而引起成骨细胞功能异常或死亡,而这种影响关系可能是由GPX4与GSDMD信号CrOSStak引起的细胞焦亡所致。目前,本课题组正在研究GPX4与GSDMD信号匕。SStak调控成骨细胞焦亡及其对OP发生发展的影响,以期可以提供更多证据。4小结与展望在机体正常的生理过程中,细胞程序性死亡的发生处于适度的平衡状态,从而维持细胞内微环境稳态。在OP发生的病理过程中,各程序性死亡处于失衡状态,可能通过某种机制相互影响而调节OP的发生发展。PCD作为可调控的细胞死亡方式存在于某些特殊细胞体系中,在促进机体发育、维持内环境稳态、免疫调节和生理病理过程中具有重要意义。尽管科学家在PCD关键分子及信号通路的识别方面已取得突破性进展,但有关这些程序性死亡信号通路调控OP发生发展的相关机制了解甚少。未来有关PCD与OP的研究应更多侧重于程序性死亡间交互影响与OP的联系方面,力求将凋亡、坏死性凋亡、铁死亡及焦亡涵盖在一个统一体系中,进一步探究PCD的信号转导与调节机制将为OP发病机制研究及治疗策略提供更多的实验依据和支撑。(参考文献略)