第04章糖代谢NEW10.ppt

上传人:夺命阿水 文档编号:675569 上传时间:2023-10-10 格式:PPT 页数:185 大小:6.80MB
返回 下载 相关 举报
第04章糖代谢NEW10.ppt_第1页
第1页 / 共185页
第04章糖代谢NEW10.ppt_第2页
第2页 / 共185页
第04章糖代谢NEW10.ppt_第3页
第3页 / 共185页
第04章糖代谢NEW10.ppt_第4页
第4页 / 共185页
第04章糖代谢NEW10.ppt_第5页
第5页 / 共185页
点击查看更多>>
资源描述

《第04章糖代谢NEW10.ppt》由会员分享,可在线阅读,更多相关《第04章糖代谢NEW10.ppt(185页珍藏版)》请在课桌文档上搜索。

1、Metabolism of Carbohydrates,第四章 糖 代 谢,物质代谢,各类代谢间的关系,新陈代谢,同化作用,异化作用,环境物质 体内物质,吸能反应,放能反应,生物大分子 小分子,体内物质 环境物质,能量代谢,物质代谢,分解代谢,生物小分子 大分子,合成代谢,糖(carbohydrates)即碳水化合物,其化学本质为多羟醛或多羟酮类及其衍生物或多聚物。,糖的概念,根据其水解产物的情况,糖主要可分为以下四大类:,单糖(monosacchride)寡糖(oligosacchride)多糖(polysacchride)结合糖(glycoconjugate),糖的分类及其结构,葡萄糖(g

2、lucose)(已醛糖),果糖(fructose)(已酮糖),单糖不能再水解的糖。,半乳糖(galactose)(已醛糖),核糖(ribose)(戊醛糖),寡糖,常见的几种二糖有:,麦芽糖(maltose):葡萄糖 葡萄糖,蔗 糖(sucrose):葡萄糖 果糖,乳 糖(lactose):葡萄糖 半乳糖,能水解生成几分子单糖的糖,各单糖之间借脱水缩合的糖苷键相连。,多糖能水解生成多个分子单糖的糖。,常见的多糖有:,淀粉(starch),糖原(glycogen),纤维素(cellulose),淀粉是植物中养分的储存形式。,淀粉颗粒,糖原是动物体内葡萄糖的储存形式。,纤维素作为植物的骨架。,-1,

3、4-糖苷键,结合糖糖与非糖物质的结合物。,糖脂(glycolipid):是糖与脂类的结合物。糖蛋白(glycoprotein):是糖与蛋白质的结合物。,常见的结合糖有:,第一节,Introduction,概述,糖在生命活动中的主要作用是提供碳源和能源。,如糖可提供合成某些氨基酸、脂肪、胆固醇、核苷等物质的原料。,作为机体组织细胞的组成成分。,提供合成体内其他物质的原料。,如糖是糖蛋白、蛋白聚糖、糖脂等的组成成分。,一、糖的主要生理功能是氧化供能,糖的消化,人类食物中的糖主要有植物淀粉、动物糖原以及麦芽糖、蔗糖、乳糖、葡萄糖等,其中以淀粉为主。,消化部位:主要在小肠,少量在口腔。,二、糖的消化吸

4、收主要是在小肠进行,淀粉,麦芽糖+麦芽三糖(40%)(25%),-临界糊精+异麦芽糖(30%)(5%),葡萄糖,唾液中的-淀粉酶,-葡萄糖苷酶,-临界糊精酶,肠粘膜上皮细胞刷状缘,口腔,肠腔,胰液中的-淀粉酶,消化过程:,食物中含有的大量纤维素,因人体内无-糖苷酶而不能对其分解利用,但却具有刺激肠蠕动等作用,也是维持健康所必需。,吸收部位:小肠上段,吸收形式:单糖,糖的吸收,ADP+Pi,ATP,G,Na+,K+,小肠粘膜细胞,肠腔,门静脉,Na+依赖型葡萄糖转运体(Na+-dependent glucose transporter,SGLT),刷状缘,细胞内膜,吸收机制:,葡萄糖转运进入细胞

5、,这一过程依赖于葡萄糖转运体(glucose transporter,GLUT)。,三、糖代谢的概况,细胞外多糖和低聚糖,肠道(淀粉酶、寡糖酶),细胞内,细胞内储备的糖原,磷酸化酶,活化、水解,断支链,活化、水解,血糖,酵解途径,丙酮酸,有氧,无氧,乳酸,供能,血糖的来源与去路,第二节,Glycolysis,糖的无氧氧化,在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(glycolysis),亦称糖的无氧氧化(anaerobic oxidation)。糖酵解的反应部位:胞浆。,第一阶段:由葡萄糖分解成丙酮酸(pyruvate),称之为糖酵解途径(glycol

6、ytic pathway)。第二阶段:由丙酮酸转变成乳酸。,糖酵解分为两个阶段:,一、糖无氧氧化反应过程分为酵解途径和乳酸生成两个阶段,葡萄糖磷酸化为6-磷酸葡萄糖,葡萄糖,6-磷酸葡萄糖(glucose-6-phosphate,G-6-P),(一)葡萄糖经酵解途径分解为两分子丙酮酸,哺乳类动物体内已发现有4种己糖激酶同工酶,分别称为至型。肝细胞中存在的是型,称为葡萄糖激酶(glucokinase)。它的特点是:对葡萄糖的亲和力很低;受激素调控。这些特性使葡萄糖激酶在维持血糖水平和糖代谢中起着重要的生理作用。,6-磷酸葡萄糖转变为 6-磷酸果糖,6-磷酸葡萄糖,6-磷酸果糖(fructose-

7、6-phosphate,F-6-P),6-磷酸果糖转变为1,6-双磷酸果糖,6-磷酸果糖激酶-1(6-phosphfructokinase-1),6-磷酸果糖,1,6-双磷酸果糖(1,6-fructose-biphosphate,F-1,6-2P),1,6-双磷酸果糖,磷酸己糖裂解成2分子磷酸丙糖,磷酸丙糖的同分异构化,3-磷酸甘油醛氧化为1,3-二磷酸甘油酸,3-磷酸甘油醛,1,3-二磷酸甘油酸,1,3-二磷酸甘油酸转变成3-磷酸甘油酸,在以上反应中,底物分子内部能量重新分布,生成高能键,使ADP磷酸化生成ATP的过程,称为底物水平磷酸化(substrate level phosphoryl

8、ation)。,1,3-二磷酸 甘油酸,3-磷酸甘油酸,3-磷酸甘油酸转变为2-磷酸甘油酸,2-磷酸甘油酸转变为磷酸烯醇式丙酮酸,2-磷酸甘油酸,磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化生成ATP,磷酸烯醇式丙酮酸,丙酮酸,(二)丙酮酸转变成乳酸,反应中的NADH+H+来自于上述第6步反应中的 3-磷酸甘油醛脱氢反应。,糖酵解的代谢途径,E2,E1,E3,反应部位:胞浆;糖酵解是一个不需氧的产能过程;反应全过程中有三步不可逆的反应:,糖酵解小结,产能的方式和数量方式:底物水平磷酸化净生成ATP数量:从G开始 22-2=2ATP从Gn开始 22-1=3ATP终产物乳酸的去路释放入血,进

9、入肝脏再进一步代谢:分解利用 乳酸循环(糖异生),除葡萄糖外,其它己糖也可转变成磷酸己糖而进入酵解途径。,关键酶,调节方式,二、糖酵解的调控是对3个关键酶活性的调节,(一)6-磷酸果糖激酶-1对调节酵解途径的流量最重要,变构调节,别构激活剂:AMP;ADP;F-1,6-2P;F-2,6-2P别构抑制剂:柠檬酸;ATP(高浓度),ATP对6-磷酸果糖激酶-1的调节:,2,6-双磷酸果糖是6-磷酸果糖激酶-1最强的变构激活剂;其作用是与AMP一起取消ATP、柠檬酸对6-磷酸果糖激酶-1的变构抑制作用。,2,6-双磷酸果糖对6-磷酸果糖激酶-1的调节:,F-6-P,F-1,6-2P,ATP,ADP,

10、PFK-1,磷蛋白磷酸酶,PKA,PKA:蛋白激酶A(protein kinase A),糖元 脂肪 蛋白质,葡萄糖 脂肪酸甘油 氨基酸,乙酰辅酶A,草酰乙酸,柠檬酸,苹果酸,琥珀酸,琥珀酰CoA,-酮戊二酸,2H 氧化磷酸化,ADPPi,ATP,CO2,(二)丙酮酸激酶是糖酵解的第二个重要的调节点,别构调节,别构抑制剂:ATP,丙氨酸,别构激活剂:1,6-双磷酸果糖,共价修饰调节,丙酮酸激酶,丙酮酸激酶,ATP,ADP,Pi,磷蛋白磷酸酶,(无活性),(有活性),PKA:蛋白激酶A(protein kinase A),CaM:钙调蛋白,(三)己糖激酶受到反馈抑制调节,6-磷酸葡萄糖可反馈抑制

11、己糖激酶,但肝葡萄糖激酶不受其抑制。长链脂肪酰CoA可别构抑制肝葡萄糖激酶。胰岛素可诱导葡萄糖激酶基因的转录,促进酶的合成。,是机体在缺氧情况下获取能量的有效方式。是某些细胞在氧供应正常情况下的重要供能途径。,无线粒体的细胞,如:红细胞,代谢活跃的细胞,如:白细胞、骨髓细胞,三、糖酵解的主要生理意义是在机体缺氧的情况下快速供能,第三节 Aerobic Oxidation of Carbohydrate,糖的有氧氧化,概念,糖的有氧氧化(aerobic oxidation)指在机体氧供充足时,葡萄糖彻底氧化成H2O和CO2,并释放出能量的过程。是机体主要供能方式。部位:胞液及线粒体,第一阶段:酵

12、解途径,第二阶段:丙酮酸的氧化脱羧,第三阶段:三羧酸循环,G(Gn),第四阶段:氧化磷酸化,丙酮酸,乙酰CoA,H2O,O,ATP,ADP,TAC循环,胞液,线粒体,一、糖有氧氧化的反应过程包括糖酵解途径、丙酮酸氧化脱羧、三羧酸循环及氧化磷酸化,柠檬酸,(一)葡萄糖循糖酵解途径分解为丙酮酸,总反应式:,(二)丙酮酸进入线粒体氧化脱羧生成乙酰CoA,丙酮酸脱氢酶复合体的组成,E1:丙酮酸脱氢酶E2:二氢硫辛酰胺转乙酰酶E3:二氢硫辛酰胺脱氢酶,TPP 硫辛酸()HSCoAFAD,NAD+,酶,辅酶,丙酮酸脱氢酶复合体催化的反应过程:,1.丙酮酸脱羧形成羟乙基-TPP,由丙酮酸脱氢酶催化(E1)。

13、2.由二氢硫辛酰胺转乙酰酶(E2)催化形成乙酰硫辛酰胺-E2。3.二氢硫辛酰胺转乙酰酶(E2)催化生成乙酰CoA,同时使硫辛酰胺上的二硫键还原为2个巯基。4.二氢硫辛酰胺脱氢酶(E3)使还原的二氢硫辛酰胺脱氢,同时将氢传递给FAD。5.在二氢硫辛酰胺脱氢酶(E3)催化下,将FADH2上的H转移给NAD+,形成NADH+H+。,CO2,CoASH,NAD+,NADH+H+,5.NADH+H+的生成,1.-羟乙基-TPP的生成,2.乙酰硫辛酰胺的生成,3.乙酰CoA的生成,4.硫辛酰胺的生成,三羧酸循环(Tricarboxylic Acid Cycle,TAC)也称为柠檬酸循环,这是因为循环反应中

14、的第一个中间产物是一个含三个羧基的柠檬酸。由于Krebs正式提出了三羧酸循环的学说,故此循环又称为Krebs循环,它由一连串反应组成。,概述,反应部位:线粒体,二、三羧酸循环是以形成柠檬酸为起始物的循环反应系统,(一)TCA循环由8步代谢反应组成,乙酰CoA与草酰乙酸缩合成柠檬酸 柠檬酸经顺乌头酸转变为异柠檬酸 异柠檬酸氧化脱羧转变为-酮戊二酸-酮戊二酸氧化脱羧生成琥珀酰CoA 琥珀酰CoA合成酶催化底物水平磷酸化反应 琥珀酸脱氢生成延胡索酸 延胡索酸加水生成苹果酸 苹果酸脱氢生成草酰乙酸,NADH+H+,NAD+,NAD+,NADH+H+,GTP,GDP+Pi,FAD,FADH2,NADH+

15、H+,NAD+,柠檬酸合酶,顺乌头酸梅,异柠檬酸脱氢酶,-酮戊二酸脱氢酶复合体,琥珀酰CoA合成酶,琥珀酸脱氢酶,延胡索酸酶,苹果酸脱氢酶,柠檬酸的合成:O=C-COOH CH3 CH2COOH CH2+C=O HO-C-COO-COOH SCoA CH2COOH 草酰乙酸 乙酰辅酶A 柠檬酸,柠檬酸合成酶,H2O,CoA-SH,反应不可逆,异柠檬酸的生成 COO-COO-COO-CH2 CH H-C-OH-OOC-C-OH-OOC-C-OOC-C-H CH2 CH2 CH2 COO-COO-COO-柠檬酸 顺乌头酸 异柠檬酸,H2O,H2O,第一次氧化脱羧生成-酮戊二酸:COO-COO-H-

16、C-OH C=O-OOC-C-H CH2 CH2 CH2 COO-COO-异柠檬酸-酮戊二酸,异柠檬酸脱氢酶,NAD+,NADH+H+CO2,Mg2+,反应不可逆,第二次氧化脱羧生成琥珀酰CoA:COO-O=CSCoA C=O CH2 CH2 CH2 CH2 COO-COO-酮戊二酸 琥珀酰CoA,-酮戊二酸脱氢酶复合体,NAD+,CoA-SH,NADH+H+,CO2,反应不可逆,底物水平磷酸化:琥珀酰-CoA合成酶催化O=CSCoA COO-CH2 CH2 CH2 CH2 COO-COO-琥珀酰-CoA 琥珀酸TAC中唯一的底物水平磷酸化反应,产生GTP。,琥珀酰-CoA合成酶,GDP+Pi

17、,GTP,+CoA,琥珀酸脱氢生成延胡索酸:CH2-COO-HC-COO-CH2-COO-OOC-CH 琥珀酸 延胡索酸,琥珀酸脱氢酶,FAD,FADH2,苹果酸的生成:HC-COO-HO-CH-COO-OOC-CH CH2-COO-延胡索酸 苹果酸,延胡索酸酶,H2O,草酰乙酸的再生成:HO-CH-COO-O=C-COOH CH2-COO-CH2-COO-苹果酸 草酰乙酸,苹果酸脱氢酶,NAD+,NADH+H+,小结:,三羧酸循环的概念:指乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复的进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。TAC过程的反应部位是线粒体。,一次底物水平磷酸

18、化、二次脱羧基反应、三个关键酶、四次脱氢反应来归纳三羧酸循环,经过一次三羧酸循环,消耗一分子乙酰CoA;经四次脱氢,二次脱羧,一次底物水平磷酸化;生成1分子FADH2,3分子NADH+H+,2分子CO2,1分子GTP;关键酶有:柠檬酸合酶,-酮戊二酸脱氢酶复合体,异柠檬酸脱氢酶。,整个循环反应为不可逆反应。,三羧酸循环的要点:,三羧酸循环中间产物起催化剂的作用,本身无量的变化,不可能通过三羧酸循环直接从乙酰CoA合成草酰乙酸或三羧酸循环中其他产物,同样中间产物也不能直接在三羧酸循环中被氧化为CO2及H2O。,三羧酸循环的中间产物:,表面上看来,三羧酸循环运转必不可少的草酰乙酸在三羧酸循环中是不

19、会消耗的,它可被反复利用。实际上:,例如:,.机体内各种物质代谢之间是彼此联系、相互配合的,TAC中的某些中间代谢物能够转变合成其他物质,借以沟通糖和其他物质代谢之间的联系。,.机体糖供不足时,可能引起TAC运转障碍,这时苹果酸、草酰乙酸可脱羧生成丙酮酸,再进一步生成乙酰CoA进入TAC氧化分解。,所以,草酰乙酸必须不断被更新补充。,草酰乙酸的来源如下:,H+e 进入呼吸链彻底氧化生成H2O 的同时ADP偶联磷酸化生成ATP。,三、糖有氧氧化是机体获得ATP的主要方式,糖的有氧氧化是机体产能最主要的途径。它不仅产能效率高,而且由于产生的能量逐步分次释放,相当一部分形成ATP,所以能量的利用率也

20、高。,TCA循环在3大营养物质代谢中具有重要生理意义,TCA循环是3大营养素的最终代谢通路,其作用在于通过4次脱氢,为氧化磷酸化反应生成ATP提供还原当量。TCA循环是糖、脂肪、氨基酸代谢联系的枢纽。,糖元 脂肪 蛋白质,葡萄糖 脂肪酸甘油 氨基酸,乙酰辅酶A,草酰乙酸,柠檬酸,苹果酸,琥珀酸,琥珀酰CoA,-酮戊二酸,2H 氧化磷酸化,ADPPi,ATP,CO2,关键酶,酵解途径:,丙酮酸的氧化脱羧:丙酮酸脱氢酶复合体,三羧酸循环:,己糖激酶丙酮酸激酶6-磷酸果糖激酶-1,柠檬酸合酶-酮戊二酸脱氢酶复合体异柠檬酸脱氢酶,四、糖有氧氧化的调节是基于能量的需求,丙酮酸脱氢酶复合体的调节,别构调节

21、,别构抑制剂:乙酰CoA;NADH;ATP别构激活剂:AMP;ADP;NAD+,乙酰CoA/HSCoA或 NADH/NAD+时,丙酮酸脱氢酶复合体活性也受到抑制。这两种情况见于饥饿、大量脂酸被动员利用时,这时糖的有氧氧化被抑制,大多数组织器官利用脂酸作为能量来源以确保脑等重要组织对葡萄糖的需要。,共价修饰调节,胰高血糖素,TCA循环受底物、产物和关键酶活性的调节,TCA循环主要受其底物、产物、关键酶活性3种因素的调控。TCA循环的速率和流量主要受3种因素的调控:底物的供应量,催化循环最初几步反应酶的反馈别构抑制,产物堆积的抑制作用。,1TCA循环中有3个关键酶,柠檬酸合酶异柠檬酸脱氢酶-酮戊二

22、酸脱氢酶,异柠檬酸 脱氢酶,柠檬酸合酶,-酮戊二酸脱氢酶复合体,柠檬酸,Ca2+,ATP、ADP的影响,产物堆积引起抑制,循环中后续反应中间产物别位反馈抑制前面反应中的酶,其他,如Ca2+可激活许多酶,三羧酸循环的调节,2TCA循环与上游和下游反应协调,在正常情况下,(糖)酵解途径和TCA循环的速度是相协调的。这种协调不仅通过高浓度的ATP、NADH的抑制作用,亦通过柠檬酸对磷酸果糖激酶-1的别构抑制作用而实现。氧化磷酸化的速率对TCA循环的运转也起着非常重要的作用。,体内ATP浓度是AMP的50倍,经上述反应后,ATP/AMP变动比ATP变动大,有信号放大作用,从而发挥有效的调节作用。,有氧

23、氧化全过程中许多酶的活性都受细胞内ATP/ADP或ATP/AMP比率的影响,因而能得以协调。,概念,机制,有氧时,NADH+H+进入线粒体内氧化,丙酮酸进入线粒体进一步氧化而不生成乳酸;缺氧时,酵解途径加强,NADH+H+在胞浆浓度升高,丙酮酸作为氢接受体生成乳酸。,巴斯德效应(Pastuer effect)指有氧氧化抑制糖酵解的现象。,五、巴斯德效应是指糖有氧氧化抑制糖酵解的现象,第 四 节 Other Metabolism Pathways of Glucose,葡萄糖的其他代谢途径,概念,磷酸戊糖途径(pentose phosphate pathway)是指由葡萄糖生成磷酸戊糖及NADP

24、H+H+,前者再进一步转变成3-磷酸甘油醛和6-磷酸果糖的反应过程。,一、磷酸戊糖途径生成NADPH和磷酸戊糖,细胞定位:胞液,第一阶段:氧化反应,(一)磷酸戊糖途径的反应过程分为两个阶段,反应过程可分为二个阶段:,第二阶段:非氧化反应,生成磷酸戊糖,NADPH+H+及CO2。,包括一系列基团转移。,6-磷酸葡萄糖酸,5-磷酸核酮糖,6-磷酸葡萄糖脱氢酶,6-磷酸葡萄糖酸脱氢酶,6-磷酸葡萄糖,6-磷酸葡萄糖酸内酯,16-磷酸葡萄糖在氧化阶段生成磷酸戊糖和NADPH,5-磷酸核糖,催化第一步脱氢反应的6-磷酸葡萄糖脱氢酶是此代谢途径的关键酶。两次脱氢脱下的氢均由NADP+接受生成NADPH+H

25、+。反应生成的磷酸核糖是一个非常重要的中间产物。,G-6-P,5-磷酸核糖,NADP+,NADPH+H+,NADP+,NADPH+H+,CO2,第二阶段反应的意义就在于通过一系列基团转移反应,将核糖转变成6-磷酸果糖和3-磷酸甘油醛而进入酵解途径。因此磷酸戊糖途径也称磷酸戊糖旁路(pentose phosphate shunt)。,2经过基团转移反应进入糖酵解途径,5-磷酸核酮糖(C5)3,5-磷酸核糖C5,磷酸戊糖途径,第一阶段,第二阶段,总反应式:,脱氢反应以NADP+为受氢体,生成NADPH+H+。反应过程中进行了一系列酮基和醛基转移反应,经过了3、4、5、6、7碳糖的演变过程。反应中生

26、成了重要的中间代谢物5-磷酸核糖。一分子G-6-P经过反应,只能发生一次脱羧和二次脱氢反应,生成一分子CO2和2分子NADPH+H+。,磷酸戊糖途径的特点:,(二)磷酸戊糖途径主要受NADPH/NADP+比值的调节,6-磷酸葡萄糖脱氢酶此酶为磷酸戊糖途径的关键酶,其活性的高低决定6-磷酸葡萄糖进入磷酸戊糖途径的流量。此酶活性主要受NADPH/NADP+比值的影响,比值升高则被抑制,降低则被激活。另外NADPH对该酶有强烈抑制作用。因此,磷酸戊糖途径的流量取决于NADPH的需求。,(三)磷酸戊糖途径的生理意义在于生成NADPH和5-磷酸核糖,2提供NADPH作为供氢体参与多种代谢反应,1为核酸的

27、生物合成提供核糖,(1)NADPH是体内许多合成代谢的供氢体;(2)NADPH参与体内羟化反应;(3)NADPH还用于维持谷胱甘肽(glutathione,GSH)的还原状态。,氧化型谷胱甘肽,还原型谷胱甘肽,还原型谷胱甘肽是体内重要的抗氧化剂,可以保护一些含-SH基的蛋白质或酶免受氧化剂尤其是过氧化物的损害。在红细胞中还原型谷胱甘肽更具有重要作用。它可以保护红细胞膜蛋白的完整性。,蚕豆病Favism:是6-磷酸葡萄糖脱氢酶(G6PD)缺乏者进食蚕豆horsebean(含有蚕豆嘧啶和异胺基巴比妥酸等氧化剂)后发生的急性溶血性贫血acute hemolytic anemia。G-6-PD缺陷症是

28、一种遗传性疾病,它的缺陷基因位于决定性别的X染色体上,所以叫“性连锁遗传病”。男孩易发病,因男孩只有1条X染色体,而女孩有2条X染色体,1条X染色体有缺陷,另1条X染色体还能进行代偿。该缺陷的基因在南方比北方人群中常见。,第 五 节 Glycogenesis and Glycogenolysis,糖原的合成与分解,非还原端:多个,形 状:树枝状,分子量:1001000万,还原端:一个,糖原的结构特点,糖原的分布,肝糖原:含量可达肝重的5%(总量为90-100g),肌糖原:含量为肌肉重量的12%(总量为200-400g),返回,部位:肝脏、肌肉组织等细胞的胞浆中,一.糖原合成代谢主要在肝和肌肉中

29、进行,定义:由单糖合成糖原的过程称为糖原的合成(glycogenesis)。,单糖:葡萄糖(主要)、果糖、半乳糖等,葡萄糖磷酸化生成6-磷酸葡萄糖,ATP,葡萄糖激酶,Mg2+,葡萄糖(glucose),6-磷酸葡萄糖(glucose-6-phosphate),6-磷酸葡萄糖转变为1-磷酸葡萄糖,1-磷酸葡萄糖(glucose-1-phosphate),6-磷酸葡萄糖(glucose-6-phosphate),尿苷二磷酸葡萄糖的生成,UDPG焦磷酸化酶,H2O,2Pi,UDPG中的葡萄糖连接到糖原引物上,尿苷二磷酸葡萄糖(UDPG),糖原引物(Gn)(glycogen primer),糖原合酶

30、,糖原(Gn+1)(glycogen),UDP,分支酶催化糖原不断形成新分支链,糖原合成的限速酶,1218G,糖原合成图,消耗能量 需要引物 非还原端,葡萄糖,返回,分支酶,二.肝糖原分解产物-葡萄糖可补充血糖,部位 肝脏,产物 葡萄糖,糖原分解 是指糖原分解为葡萄糖的过程。,糖原磷酸解为1-磷酸葡萄糖,磷酸化酶,糖 原,Gn,H3PO4,1-磷酸葡萄糖(glucose-1-phosphate),Pi,非还原性末端,1-磷酸葡萄糖,磷酸化酶,脱支酶的作用,脱支酶具有双重作用:-1,4-糖基转移酶-1,6-糖苷酶,1-磷酸葡萄糖转变为6-磷酸葡萄糖,1-磷酸葡萄糖(glucose-1-phosp

31、hate),6-磷酸葡萄糖水解为葡萄糖,葡萄糖(glucose),6-磷酸葡萄糖(glucose-6-phosphate),葡萄糖-6-磷酸酶(肝),脑与肌肉中缺乏此酶,糖原分解图,糖 原Gn+1,糖原的合成与分解图,葡萄糖,糖原的合成与分解总图,肝糖原与肌糖原比较,肝糖原 肌糖原贮 量 90-100g 200-500g 5%1-2%合成原料 单糖/非糖物质 葡萄糖分解产物 葡萄糖 乳 酸功 能 维持血糖浓度 满足剧烈运动时 的相对恒定 肌肉对能量的需要消 耗 餐后12-18h 剧烈运动后,返回,糖原合成酶,磷酸化酶磷酸化酶,磷酸化酶,三.糖原合成与分解受到彼此相反的调节,糖原合成关键酶,糖原

32、分解关键酶,糖原合成酶,糖原合成酶,P,无活性,有活性,有活性,无活性,三.糖原合成与分解受到彼此相反的调节,糖原合成酶 磷酸化酶,糖原合成关键酶,糖原分解关键酶,酶活性,内在蛋白质的磷酸化作用,改变细胞的生理过程,细胞膜,细胞膜,蛋白激酶(无活性),蛋白激酶(有活性),受体,非磷酸化蛋白激酶,三.糖原合成与分解受到彼此相反的调节,激素通过cAMP-蛋白激酶调节代谢示意图,共价修饰,激素对肝糖原合成与分解的调控,意义:由于酶的共价修饰反应是酶促反应,只要有少量信号分子(如激素)存在,即可通过加速这种酶促反应,而使大量的另一种酶发生化学修饰,从而获得放大效应。这种调节方式快速、效率极高。,肾上腺

33、素或胰高血糖素,1、腺苷酸环化酶(无活性),腺苷酸环化酶(活性),2、ATP,cAMP,R、cAMP,3、蛋白激酶(无活性),蛋白激酶(活性),4、磷酸化酶激酶(无活性),磷酸化酶激酶(活性),5、磷酸化酶 b(无活性),磷酸化酶 a(活性),6、糖原,6-磷酸葡萄糖,1-磷酸葡萄糖,葡萄糖,血液,肾上腺素或胰高血糖素,1,108,葡萄糖,4,5,6,胰高血糖素和肾上腺素对糖原合成与分解的调节,胰高血糖素、肾上腺素,级联放大效应,返回,别构调节G是别构效应物磷酸化酶(a)变构的酶易受磷蛋白磷酸酶催化而脱 磷酸化,失活同时,磷蛋白磷酸酶使糖原合成酶脱磷 酸化而活性表现为:G,糖原合成,糖原分解,

34、肝糖原合成与分解的调节,血糖升高时,肌糖原合成与分解,合成:(同肝糖原,无三碳途径)分解:与肝糖原不同,(无G6PE)糖原G-6-P 糖酵解途径调节:肾上腺素为主 AMP:别构激活磷酸化酶-b ATP及G-6-P:抑制磷酸化酶-b G-6-P:别构激活糖原合成酶,调节小结:,双向调控:对合成酶系与分解酶系分别进行调节,如加强合成则减弱分解,或反之。,双重调节:别构调节和共价修饰调节。,肝糖原和肌糖原代谢调节各有特点:如分解肝糖原的激素主要为胰高血糖素,分解肌糖原的激素主要为肾上腺素。,关键酶调节上存在级联效应。,关键酶都以活性、无(低)活性二种形式存在,二种形式之间可通过磷酸化和去磷酸化而相互

35、转变。,四、糖原积累症是由先天性酶缺陷所致,糖原累积症(glycogen storage diseases)是一类遗传性代谢病,其特点为体内某些器官组织中有大量糖原堆积。引起糖原累积症的原因是患者先天性缺乏与糖原代谢有关的酶类。,糖原积累症分型,第 六 节 Gluconeogenesis,糖 异 生,糖异生(gluconeogenesis)是指从非糖化合物转变为葡萄糖或糖原的过程。,部位:,原料:,概念:,主要在肝、肾细胞的胞浆及线粒体。,主要有丙酮酸、乳酸、甘油、生糖氨基酸。,过程:,酵解途径中有3个由关键酶催化的不可逆反应。在糖异生时,须由另外的反应和酶代替。,糖异生途径与酵解途径大多数反

36、应是共有的、可逆的;,糖异生途径(gluconeogenic pathway)指从丙酮酸生成葡萄糖的具体反应过程。,一、糖异生途径不完全是糖酵解的逆反应,(一)丙酮酸经丙酮酸羧化支路变为磷酸烯醇式丙酮酸,丙酮酸,草酰乙酸,PEP,丙酮酸羧化酶(pyruvate carboxylase),辅酶为生物素(反应在线粒体),磷酸烯醇式丙酮酸羧激酶(反应在线粒体、胞液),草酰乙酸转运出线粒体:,丙酮酸,线粒体,胞液,糖异生途径所需NADH+H+的来源:,糖异生途径中,1,3-二磷酸甘油酸生成3-磷酸甘油醛时,需要NADH+H+。,由乳酸为原料异生糖时,NADH+H+由下述反应提供。,乳酸,丙酮酸,LDH

37、,NAD+,NADH+H+,由氨基酸为原料进行糖异生时,NADH+H+则由线粒体内NADH+H+提供,它们来自于脂酸的-氧化或三羧酸循环,NADH+H+转运则通过草酰乙酸与苹果酸相互转变而转运。,(二)1,6-双磷酸果糖转变为6-磷酸果糖,(三)6-磷酸葡萄糖水解为葡萄糖,在以上反应过程中,作用物的互变反应分别由不同的酶催化其单向反应,这种互变循环被称为底物循环(substrate cycle)。当两种酶活性相等时,就不能将代谢向前推进,结果仅是ATP分解释放出能量,因而又称为无效循环(futile cycle)。而在细胞内两酶活性不完全相等,使代谢反应仅向一个方向进行。,非糖物质进入糖异生的

38、途径,糖异生的原料转变成糖代谢的中间产物,生糖氨基酸,-酮酸,-NH2,甘油,-磷酸甘油,磷酸二羟丙酮,乳酸,丙酮酸,2H,上述糖代谢中间代谢产物进入糖异生途径,异生为葡萄糖或糖原,三羧酸循环中间产物起催化剂的作用,本身无量的变化,不可能通过三羧酸循环直接从乙酰CoA合成草酰乙酸或三羧酸循环中其他产物,同样中间产物也不能直接在三羧酸循环中被氧化为CO2及H2O。,三羧酸循环问题回答,酵解途径与糖异生途径是方向相反的两条代谢途径。如从丙酮酸进行有效的糖异生,就必须抑制酵解途径,以防止葡萄糖又重新分解成丙酮酸;反之亦然。这种协调主要依赖于对这两条途径中的两个底物循环进行调节。,二、糖异生的调节通过

39、对2个底物循环的调节与糖酵解调节彼此协调,(一)第一个底物循环在6-磷酸果糖与1,6-双磷酸果糖之间进行,(二)在磷酸烯醇式丙酮酸和丙酮酸之间进行第二个底物循环,PEP,丙酮酸,ATP,ADP,丙酮酸激酶,1,6-双磷酸果糖,丙氨酸,乙 酰 CoA,草酰乙酸,(一)维持血糖水平的恒定是糖异生最主要的生理作用,空腹或饥饿时,依赖氨基酸、甘油等异生成葡萄糖,以维持血糖水平恒定。正常成人的脑组织不能利用脂酸,主要依赖葡萄糖供给能量;红细胞没有线粒体,完全通过糖酵解获得能量;骨髓、神经等组织由于代谢活跃,经常进行糖酵解。这样,即使在非饥饿状况下,机体也需消耗一定量的糖,以维持生命活动。此时这些糖全部依

40、赖糖异生生成。,三、糖异生的生理意义主要在于维持血糖水平恒定,糖异生的主要原料为乳酸、氨基酸及甘油。,乳酸来自肌糖原分解。这部分糖异生主要与运动强度有关。而在饥饿时,糖异生的原料主要为氨基酸和甘油。,(二)糖异生是补充或恢复肝糖原储备的重要途径,三碳途径:指进食后,大部分葡萄糖先在肝外细胞中分解为乳酸或丙酮酸等三碳化合物,再进入肝细胞异生为糖原的过程。,长期饥饿或禁食时,肾糖异生增强,有利于维持酸碱平衡。发生这一变化的原因可能是饥饿造成的代谢性酸中毒造成的。此时体液pH降低,促进肾小管中磷酸烯醇式丙酮酸羧激酶的合成,从而使糖异生作用增强。另外,当肾中-酮戊二酸因异生成糖而减少时,可促进谷氨酰胺

41、脱氨生成谷氨酸以及谷氨酸的脱氨反应,肾小管细胞将NH3分泌入管腔中,与原尿中H+结合,降低原尿H+的浓度,有利于排氢保钠作用的进行,对于防止酸中毒有重要作用。,(三)肾糖异生增强有利于维持酸碱平衡,肌收缩(尤其是供氧不足时)通过糖酵解生成乳酸。肌内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。葡萄糖释入血液后又可被肌摄取,这就构成了一个循环,此循环称为乳酸循环,也称Cori循环。乳酸循环的形成是由于肝和肌组织中酶的特点所致。,四、肌中产生的乳酸运输至肝进行糖异生形成乳酸循环,糖异生活跃有葡萄糖-6磷酸酶,【,】,乳酸循环,肝,肌肉,葡萄糖,葡萄糖,葡萄糖/肌糖原,

42、酵解途径,丙酮酸,乳酸,NADH,NAD+,乳酸,乳酸,NAD+,NADH,丙酮酸,糖异生途径,血液,糖异生低下没有葡萄糖-6磷酸酶,【,】,生理意义,乳酸再利用,避免了乳酸的损失。,防止乳酸的堆积引起酸中毒。,乳酸循环是一个耗能的过程,2分子乳酸异生为1分子葡萄糖需6分子ATP。,第 七 节Metabolism of Other Monose,其它单糖的代谢,果糖、半乳糖和甘露糖都是通过转变为糖酵解途径的中间产物而进入糖酵解途径代谢。,第 八 节 The Definition,Level and Regulation of Blood Glucose,血糖及其调节,血糖,指血液中的葡萄糖。,

43、血糖水平,即血糖浓度。,血糖及血糖水平的概念:,正常血糖浓度:3.896.11mmol/L,血糖水平恒定的生理意义:,保证重要组织器官的能量供应,特别是某些依赖葡萄糖供能的组织器官。,脑组织不能利用脂酸,正常情况下主要依赖葡萄糖供能;红细胞没有线粒体,完全通过糖酵解获能;骨髓及神经组织代谢活跃,经常利用葡萄糖供能。,血糖,一、血糖的来源和去路是相对平衡的,血糖水平保持恒定是糖、脂肪、氨基酸代谢协调的结果,也是肝、肌、脂肪组织等各器官组织代谢协调的结果。机体的各种代谢以及各器官之间能这样精确协调,以适应能量、燃料供求的变化,主要依靠激素的调节。酶水平的调节是最基本的调节方式和基础。,二、血糖水平

44、的平衡主要是受到激素调节,主要调节激素,降低血糖:胰岛素(insulin),升高血糖:,胰高血糖素(glucagon)糖皮质激素肾上腺素,胰岛素(Insulin)是体内唯一的降低血糖的激素,也是唯一同时促进糖原、脂肪、蛋白质合成的激素。胰岛素的分泌受血糖控制,血糖升高立即引起胰岛素分泌;血糖降低,分泌即减少。,(一)胰岛素是体内唯一降低血糖的激素,促进肌、脂肪组织等的细胞膜葡萄糖载体将葡萄糖转运入细胞。通过增强磷酸二酯酶活性,降低cAMP水平,从而使糖原合酶活性增强、磷酸化酶活性降低,加速糖原合成、抑制糖原分解。通过激活丙酮酸脱氢酶磷酸酶而使丙酮酸脱氢酶激活,加速丙酮酸氧化为乙酰CoA,从而加

45、快糖的有氧氧化。抑制肝内糖异生。这是通过抑制磷酸烯醇式丙酮酸羧激酶的合成以及促进氨基酸进入肌组织并合成蛋白质,减少肝糖异生的原料。通过抑制脂肪组织内的激素敏感性脂肪酶,可减缓脂肪动员的速率。,胰岛素的作用机制:,(二)机体在不同状态下有相应的升高血糖的激素,1胰高血糖素(glucagon)是体内主要升高血糖的激素,血糖降低或血内氨基酸升高刺激胰高血糖素的分泌。,胰高血糖素的作用机制:,经肝细胞膜受体激活依赖cAMP的蛋白激酶,从而抑制糖原合酶和激活磷酸化酶,迅速使肝糖原分解,血糖升高。通过抑制6-磷酸果糖激酶-2,激活果糖双磷酸酶-2,从而减少2,6-双磷酸果糖的合成,后者是6-磷酸果糖激酶-

46、1的最强的变构激活剂以及果糖双磷酸酶-1的抑制剂。于是糖酵解被抑制,糖异生则加速。促进磷酸烯醇式丙酮酸羧激酶的合成;抑制肝L型丙酮酸激酶;加速肝摄取血中的氨基酸,从而增强糖异生。通过激活脂肪组织内激素敏感性脂肪酶,加速脂肪动员,从而间接升高血糖水平。,胰岛素和胰高血糖素是调节血糖,实际上也是调节三大营养物代谢最主要的两种激素。机体内糖、脂肪、氨基酸代谢的变化主要取决于这两种激素的比例。不同情况下这两种激素的分泌是相反的。引起胰岛素分泌的信号(如血糖升高)可抑制胰高血糖素分泌。反之,使胰岛素分泌减少的信号可促进胰高血糖素分泌。,2糖皮质激素可引起血糖升高,促进肌肉蛋白质分解,分解产生的氨基酸转移

47、到肝进行糖异生。抑制肝外组织摄取和利用葡萄糖,抑制点为丙酮酸的氧化脱羧。,此外,在糖皮质激素存在时,其他促进脂肪动员的激素才能发挥最大的效果,间接抑制周围组织摄取葡萄糖。,糖皮质激素的作用机制可能有两方面:,3肾上腺素是强有力的升高血糖的激素,肾上腺素的作用机制:,通过肝和肌肉的细胞膜受体、cAMP、蛋白激酶级联激活磷酸化酶,加速糖原分解。主要在应激状态下发挥调节作用。,正常人体内存在一套精细的调节糖代谢的机制,在一次性食入大量葡萄糖后,血糖水平不会出现大的波动和持续升高。,人体对摄入的葡萄糖具有很大的耐受能力的现象称为葡萄糖耐量(glucose tolerence)。,三、血糖水平异常及糖尿

48、病是最常见的糖代谢紊乱,临床上因糖代谢障碍可发生血糖水平紊乱,常见有以下两种类型:,低血糖(hypoglycemia)高血糖(hyperglycemia),(一)低血糖是指血糖浓度低于3.0mmol/L,低血糖影响脑的正常功能,因为脑细胞所需要的能量主要来自葡萄糖的氧化。当血糖水平过低时,就会影响脑细胞的功能,从而出现头晕、倦怠无力、心悸等,严重时出现昏迷,称为低血糖休克。如不及时给病人静脉补充葡萄糖,可导致死亡。,低血糖的危害:,胰性(胰岛-细胞机能亢进、胰岛-细胞机能低下等);肝性(肝癌、糖原累积病等);内分泌异常(垂体机能低下、肾上腺皮质机能低下等);肿瘤(胃癌等);饥饿或不能进食者等。

49、,低血糖的原因:,(二)高血糖是指空腹血糖高于6.9mmol/L,临床上将空腹血糖浓度高于5.66.9mmol/L 称为高血糖(hyperglycemia)。当血糖浓度超过了肾小管的重吸收能力(肾糖阈),则可出现糖尿。持续性高血糖和糖尿,特别是空腹血糖和糖耐量曲线高于正常范围,主要见于糖尿病(diabetes mellitus)。,糖尿病;遗传性胰岛素受体缺陷某些慢性肾炎、肾病综合症等;生理性高血糖和糖尿。,高血糖的原因:,(三)糖尿病是最常见的糖代谢紊乱疾病,糖尿病是一种因部分或完全胰岛素缺失、或细胞胰岛素受体减少、或受体敏感性降低导致的疾病,它是除了肥胖症之外人类最常见的内分泌紊乱性疾病。,型(胰岛素依赖型)型(非胰岛素依赖型),糖尿病可分为二型:,G(补充血糖),G-6-P,F-6-P(进入酵解途径),G-1-P,Gn(合成糖原),UDPG,6-磷酸葡萄糖内酯(进入磷酸戊糖途径),思考题,1.请思考谷氨酸彻底氧化成CO2 和H2O和ATP的过程.2.6-磷酸葡萄糖在肝中或肌肉中能进入哪些代谢 通路?,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号