Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine.docx

上传人:夺命阿水 文档编号:705940 上传时间:2023-10-21 格式:DOCX 页数:11 大小:419.90KB
返回 下载 相关 举报
Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine.docx_第1页
第1页 / 共11页
Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine.docx_第2页
第2页 / 共11页
Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine.docx_第3页
第3页 / 共11页
Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine.docx_第4页
第4页 / 共11页
Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine.docx_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine.docx》由会员分享,可在线阅读,更多相关《Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine.docx(11页珍藏版)》请在课桌文档上搜索。

1、naturecommunicationsArticlehttps:doi.org/10.1038/s41467-022-35440-wTemperature-adaptivehydrogelopticalwaveguidewithsofttissue-affinityforthermalregulatedinterventionalphotomedicineReceived: 21 January 2022Accepted: 2 December 2022Published online: 16 December 2022Check for updatesGuoyinCheni,KaiHouO

2、State Key Laboratory for Modifi cation of Chemical Fibers and Polymer Materials, College of Materials Science and Engineerinq, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. iDepartment of Chemistry, Stony Brook University, Stony Brook, NewYork, NY 11794r USA.e-mail: houkai711;

3、rancao; zmf,NuoYui,PeilingWeii,TaoChem,CaihongZhangi,ShunWang,HongmeiLiu,RanCao1,LipingZhuBenjaminS.HsiaoS&MeifangZhuO1Photomedicinehasgainedgreatattentionduetoitsnontoxicity,goodselectivityandsmalltrauma.However,owingtothelimitedpenetrationoflightanddifficultmonitoringofthephoto-mediatherapies,itis

4、challengingtoapplyphotomedicaltreatmentindeeptissueastheymaydamagenormaltissues.Herein,athermalregulatedinterventionalphotomedidnebasedonatemperature-adaptivehydrogelIiber-basedopticalwaveguide(THFOW)isproposed,capableofeliminatingdeeplyseatedtumorcellswhileloweringrisksofovertemperature(causesthede

5、athofhealthycellsaroundthetumor).TheTHFOWisfabricatedbyanintegratedhomogeneous-dynamiccrosslinking-spinningmethod,andshowsaremarkablesofttissue-affinity(lowcytotoxicity,swellingstability,andsofttissue-likeYoung,smodulus).Moreover,theTHFOWshowsanexcellentlightpropagationpropertywithdifferentwavenumbe

6、rs(especially-0.32dBcm-with915nmlaserlight),andtemperature-gatedlightpropagationeffect.TheTHFOWandrelevanttherapeuticstrategyofferapromisingapplicationforintelligentphotomedicineindeepissue.Inrecentyears,asanemergingtechnology,photomedicinehasbeenusedfortreatingcancerousdiseaseswithadvantagesofsmall

7、trauma,nontoxicity,andgoodselectivity!Thetreatmentisprincipallybasedonthelight-inducedphysicalreactions(generationofheat,suchasphotothermaltherapy)-chemicalreaction(photochemicalreaction)?.,orbiologicalprocesses(optogenetic,PhOtObioIogiCaI)Gontothediseaselocationbyinducingexogenousphotosensitivereag

8、ent如.However,asthelightpenetratesonlyafewcentimetersthroughthetissue,itisdifficulttoapplyphotomedicaltreatmentindeeptissueu.Interventionaltherapyisoneofthemosteffectiveclinicaltreatmentstoreplacethedeeplyinvasivesurgicaloperations,whichreliesmainlyonanintervenedmedium(metalwire,silicaopticalfiber,et

9、c.)toimportapparatusintothedeeplyseateddiseaselocation.Andinvitroequipment(suchlikecomputedtomographyangiography,ultrasound,magneticresonance,andetc.)iscombinedtorealizediagnosisandtreatmenti4,s.Inconsequence,inthewaythatlightguidesusedforinterventionaltherapy,photomedicinecouldeffectivelysolvethepr

10、oblemoflightpenetrationthroughtissue.Althoughlight-guidessuchassilica-andpolymer-basedopticalfibershavebeenproventobefeasible,theirstiffnessandpoorbiocompatibilitymaycauseinflammationordamagetohosttissue12j6.Besides,duringphotomedicaltreatment,thephoto-inducedeffectsshouldbecontrolledinamannertoavoi

11、dthedamageofnormaltissuearoundthediseaseslocationTothisend,combiningequipmentassistedimagingtechniquewithinterventionalphotomedicaltreatmenttomonitorandguidethetherapeuticprocessisanefficientwayiu.However,thiskindoftreatmentishigh-cost,time-consumingandcomplicated.Hence,anef-fidentmethodfordynamican

12、dpreciseinsituphysiologicalmicroenvironmentalmonitoring(temperature,pH,etc.)isdesiredforguidingthephotomedicaltherapeuticprocessinacontrolledmannerunderthedeeptissue.Hydrogel-basedopticalWaveguideareidealcandidatesforusingasintervenedlight-guidesforaccurateandtargetedlightpropagationa.i9.Asamatrix,h

13、ydrogelscanbeextensivelymodifiedbymoleculardesignandrealizeenvironmentalresponses,suchastemperature,pH,andmolecularresponse”.;Inthisregard,fabricatinghydrogelopticalwaveguidewithacertaincondensedstructureandadjustableopticalproperties,couldrealizelightguidingandphysiologicalmicroenvironmentalmonitor

14、ingsimultaneously.Forexample,basedonthecoiltoglobulewinducedtransparency-opacitytransitionatthelowercriticalsolutiontemperature(LCST)1thermosensitivehydrogelscouldbeusedastemperature-dependentopticalswitches”.However,monomerswerenotpreferredforfiberformingduetoinsufficientinteraction.Furthermore,ine

15、vitablephaseseparationduringexothermicfreeradicalpolymerizationwouldinduceagglomerationofmolecularchainsorcross-linkedmicroregions,whicharedisadvantageousforfunctionalhydrogelfiberformation,thusitisdifficulttoobtainahydrogelfiberwithauniformstructure.Inthiswork,adesiredtemperature-adaptivehydrogelfi

16、ber-basedopticalwaveguide(THFOW)isfabricatedbyanintegratedhomogeneous-dynamic-crosslinking-spinningonlarge-scale.ThefabricatedTHFOWshowsanexcellentlightpropagationpropertywithdifferentwavenumbers(especially-0.32dBCm-oflightattenuationwith915nmlaserlight)andhighlysensitivetemperature-gatedlightpropag

17、ationeffect.Inaddition,athermalregulatedinterventionalphotomedicinebasedontheTHFOWisdemonstrated,capableofeliminatingdeeplyseatedtumorcellswhileloweringtherisksofovertemperature.Inconsequence,thefabricatedTHFOWshowsagreatpotentialforapplicationinthefieldofintelligentphotomedicine.Resultsanddiscussio

18、nConceptofthermalregulatedinterventionalphotomedicineAconceptofthermalregulatedinten/entionalphotomedicine(Fig.1)isproposedhere,whichiscapableofefficientlyeliminatingthetumorcellswhileloweringtherisksoftheovertemperaturethatcausesthedeathofnormalcellsaroundthetumorsite.Firstwithremarkablesofttissue-

19、affinity,thefabricatedTHFOWcanbeimplantedintodeeptissuesofhumanbodyandtargetthetumorsitewithoutinflanimation.TheuniformgelstructureandhightransparenceenabletheTHFOWefficientlytransport915nmlaserlightfromexternallaserequipmenttothediseasesiteinvivo.Consequently,photothermalheatingaroundthetumorisindu

20、cedaspre-injectedphotothermalnanoparticlesFig.1Aconceptofthermalregulatedinterventionalphotomedicine.Schematicillustrationofthethermalregulatedinterventionalphotomedicine(LCSTmeansthelowercriticalsolutiontemperature)indeeptissuebyusingthetemperature-adaptivehydrogeliberbasedopticalwaveguide(THFOW).e

21、xposingto915nmNIRlaser.WhenthetemperatureofthetumorsiteapproachesLCSToftheTHFOW,phaseseparationwouldoccurbetweenthepolymernetworkandH2Owithinthecorehydrogelfiber,causingareducedtransparencyofTHFOW(Fig.1top-rightpart),andthe915nmNIRlaserwouldscatterthesurroundingtissue.Hence,thetemperatureofthetumors

22、itecanberegulatedaroundthelowercriticalsolutiontemperature(LCST)oftheTHFOW.Atthistemperature,thecancercellswillbeefficientlykilled,whileavoidingseriousdamagetothesurroundingnormaltissuecausedbyovertemperature.Thus,thefabricatedTHFOWshowedgreatapplicationpotentialinthefieldofintelligentphotomedicine.

23、ContinuoussynthesisandstructuralcharacterizationoftheTHFOWThekeyofthethermalregulatedinterventionalphotomedicineindeeptissueisfabricatinganopticalhydrogelfiberwithlowlightattenuationandtunablethermosensitivity.Here,WechoseN-isopropylacrylamide(NIPAM)asthefunctionalmonomer,andN,N-dimethylacrylamide(D

24、MAAm)asthehydrophiliccomponenttotunetheLCSTofthefabricatedhydrogel.Toobtainalowlightguidingattenuation,theopticaltransparencyoftherawmaterialsisanimportantparameter,andthecoreshouldhavehigherrefractiveindexthantheSIieathNg.AlltheNIPAM/DMAAm(ND)hydrogelsintuitivelyshowedahightransparencyfromthephotog

25、raphsofthe(NxD100-)50hydrogels(SupplementaryFig.1a)landSupplementaryFig.1bshowsthetransmittanceandphotographsofthe(NXDlOo-X)50hydrogels.Allthehydrogelsshowedahightransmittance(90%)inthe460-920nmrange,indicatinghightransparency,andthusguaranteedlowlightattenuatio116,a.Inaddition,theLCSTofthedifferent

26、(NXDloO-X)50hydrogelswasinvestigatedtoselectasuitablemonomercompositionforthepre-gelsolution(SupplementaryFig.2);whenthetemperaturewashigherthantheLCSTfphase-separation-causedopacitywasobservedin(NDoo-)sohydrogels(SupplementaryFig,2c),whichshowedasensitivetemperature-controlledswitchforlighttransmit

27、tance.Furthermore,itcanbeseenthatwiththeincreaseinDMAAm,theLCSTofthefabricatedhydrogelincreased,andcoincidedwiththeformulaofLCST=31.37+0.58XCd,whereCdistheconcentrationofDMAAmintotalmonomers,causedbyincreaseinDMAAm(hydrophilicity)content.Asthehydrophiliccomponentinthepolymernetworkincreased,itrequir

28、esahighertemperaturetotriggerthephase-separatio2i.22.Consideringthesuitabilityoftransmittanceandthermosensitivity,and48wasthetemperaturethatcouldefficientlyeliminatethecancercells,thuswechose(N70D30)50(LCST=48.6)astheprecursorcompositiontofabricatethedesiredTHFOW.THFOWwasfabricatedusinganintegratedh

29、omogeneous-dynamic-crosslinking-spinningmethod.AsillustratedinFig.2a,2wt%Na-alginatesolutionand(N70D30)50solutionwereusedassheathandcorespinningsolution,respectively.Theformingprocessesmainlyconsistoftwostages:duringthefirststage,theNa-alginatesolutiongelledimmediatelyintotheCa-alginatesheathhydroge

30、lfiberwhenitwasinjectedintoaCaChcoagulatingbath(10C,asillustratedinthebottom-rightpartofFig.2a)?c”.Duringthesecondstage,thesheathhydrogeltubebringsthecoremonomersolutionintotheUVlightregion,whichtriggersradicalpolymerizationofdoublebondsamongthemonomers(NIPAm,DMAAm1andPEGDA),formingthecorehydrogelpo

31、lymernetworks(asillustratedinthetop-leftpartofFig.2a).However,owingtotheheatreleasedfromthepolymerization,thetemperaturewouldincreasesharplyovertheLCSTofthepre-gelledNIPAM-basedhydrogelwithouttimelyheatdissipation,causingphaseseparationwithinthethermosensitivepre-gelledcoremonomersolution.Thus,polym

32、erizationoccursintwodifferentphases,leadingtoinhomogeneouspolymernetworks.Toaddressthisproblem,thecoagulatingbathwascooledusingiceduringthespinningprocess(PAAmhydrogel力berwithfiberdiameterof500m(0.25dBcm-,with472nmlaserlight).ItcanbeseenthatTHFOWattenuation,asthelightwithalargerwavelengthhadbettertr

33、ansmissionthroughTHFOW(SupplementaryFig.1b).Furthermore,theresultsalsoshowthatdiameteroftheTHFOWsslightlyaffectthelightloss;thelargerthediameter,thesmallerthelightloss,whichwasduetothelongerraypropagationdistancesbeforereflectionatthesheath/coreinterfacewithinTHFOW-11.SupplementaryFig.8ashowslaserli

34、ghtwithdifferentpowercouldallpropagatethroughtheTHFOW,andthelightlossofthelightprofiIesshowsthatlightpowerdidntaffecttheattenuationofthelightinTHFOW(SupplementaryFig.8b).Inaddition,TheTHFOWcouldbeusedasanimplantablelight-guidetotransportNIRlight(SupplementaryFig.9),howeverispartiallydetectedbythedig

35、italcameraduetothattheNIRlightisakindofinvisiblelight.Thus,Wetestedthelightattenuationwiththe915nmNIRlightthroughtheTHFOWbythemethodofcutbacktechnique,theresultinFig.3dshowsthatthemeasuredlightlossoftheTHFOWsintheairwereintherangeof-0.32dBcm-:to0.39dBcm-.Temperature-gatedlightpropagationeffectThermo

36、sensitivityisakeypropertyoftheTHFOW1whichendowstheopticalhydrogelfiberwithintelligentresponsivenesstoenvironmentaltemperature,thusrealizingcontrollablephotothermalcancertherapyindeeptissue.AsshowninFig.4a,theTHFOWshowedexcellentlightpropagationwhenitwaspartlyimmersedinawaterUOnenUeAa M6-1 d (BP) coc

37、cser Length (cm)Fig. 3 Light propagation through the THFOW. a Laser light with different wavelength ( = 450, 515 and 650 nm) propagate through the THFOW; (b) Laser light propagates through THFOWs with different diameters; (c) Light attenuation of the THFOW calculated from the scattered light intensi

38、ty along with the THFOWprofi Ie (n = 3 independent experiments), data were presented as mean SD; (d) Propagation loss of the 915 nm laser light through THFOWs, measured by a cutback technique (n = 3 independent experiments), data were presented as mean SD. Scale bars in (a)r (b) are 1 cm.AirWater:Laser:LightV:LaserVLight4 2Fig. 4 Thermo-sensitivity of the THFOW. a Photos of light propagation through THFOW in water under different temperatures (48 C and 52 0C); (b) Photos of the light propagate through the THFOW with a segment of THFOW heating up and getting cool in sequence; (c) Light int

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号