IGBT知识归纳总结.docx

上传人:夺命阿水 文档编号:727300 上传时间:2023-10-31 格式:DOCX 页数:17 大小:33.72KB
返回 下载 相关 举报
IGBT知识归纳总结.docx_第1页
第1页 / 共17页
IGBT知识归纳总结.docx_第2页
第2页 / 共17页
IGBT知识归纳总结.docx_第3页
第3页 / 共17页
IGBT知识归纳总结.docx_第4页
第4页 / 共17页
IGBT知识归纳总结.docx_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《IGBT知识归纳总结.docx》由会员分享,可在线阅读,更多相关《IGBT知识归纳总结.docx(17页珍藏版)》请在课桌文档上搜索。

1、IGBT知识归纳总结绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。工作原理1方法:IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征JGBT消除了现有功率MOSFET的这些主要缺点。虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT技术高出很多。较

2、低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。2导通:IGBT硅片的结构与功率MOSFET的结构十分相似,主要差异是IGBT增加了P基片和一个N缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和N+区之间创建了一个Jl结。当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,Jl将处于正向偏压,一些空

3、穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET电流);空穴电流(双极)。3关断:当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题

4、:功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题更加明显。鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC和VCE密切相关的空穴移动性有密切的关系。因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理想效应是可行的。4阻断与闩锁:当集电极被施加一个反向电压时,Jl就会受到反向偏压控制,耗尽层则会向N-区扩展。因为过多地降低这个层面的厚度,将无法取得一个有效的阻断能力,所以,这个机制十分重要。另一方面,如果过大地增加这个区域尺寸,就会连续地提高压降。第二点清楚地说明了NPT器件的压降比等效(IC和速度相同)PT器件的压力降高的原因。当栅极和发射极短接并在集电极

5、端子上施加一个正电压时,P/NJ3接受反向电压控制。此时,仍然是由N漂移区中的耗尽层承受外部施加的电压。IGBT工作特性IGBT的静态特性主要有伏安特性、转移特性和开关特性。引起IGBT失效的原因1.过热容易损坏集电极,电流过大引起的瞬时过热及其主要原因,是因散热不良导致的持续过热均会使IGBT损坏。如果器件持续短路,大电流产生的功耗将引起温升,由于芯片的热容量小,其温度迅速上升,若芯片温度超过硅本征温度,器件将失去阻断能力,栅极控制就无法保护,从而导致IGBT失效。实际应用时,一般最高允许的工作温度为125。C左右。2、超出关断安全工作区引起擎住效应而损坏。擎住效应分静态擎住效应和动态擎住效

6、应。IGBT为PNPN4层结构,因体内存在一个寄生晶闸管,当集电极电流增大到一定程度时,则能使寄生晶闸管导通,门极失去控制作用,形成自锁现象,这就是所谓的静态擎住效应。IGBT发生擎住效应后,集电极电流增大,产生过高功耗,导致器件失效。动态擎住效应主要是在器件高速关断时电流下降太快,dvCE/dt很大,引起较大位移电流,也能造成寄生晶闸管自锁。3、瞬态过电流IGBT在运行过程中所承受的大幅值过电流除短路、直通等故障外,还有续流二极管的反向恢复电流、缓冲电容器的放电电流及噪声干扰造成的尖峰电流。这种瞬态过电流虽然持续时间较短,但如果不采取措施,将增加IGBT的负担,也可能会导致IGBT失效。4、

7、过电压造成集电极、发射极击穿或造成栅极、发射极击穿。IGBT保护的方法当过流情况出现时,IGBT必须维持在短路安全工作区内。IGBT承受短路的时间与电源电压、栅极驱动电压以及结温有密切关系。为了防止由于短路故障造成IGBT损坏,必须有完善的检测与保护环节。一般的检测方法分为电流传感器和IGBT欠饱和式保护。1、立即关断驱动信号在逆变电源的负载过大或输出短路的情况下,通过逆变桥输入直流母线上的电流传感器进行检测。当检测电流值超过设定的阈值时,保护动作封锁所有桥臂的驱动信号。这种保护方法最直接,但吸收电路和箝位电路必须经特别设计,使其适用于短路情况。这种方法的缺点是会造成IGBT关断时承受应力过大

8、,特别是在关断感性超大电流时,必须注意擎住效应。2、先减小栅压后关断驱动信号IGBT的短路电流和栅压有密切关系,栅压越高,短路时电流就越大。在短路或瞬态过流情况下若能在瞬间将vGS分步减少或斜坡减少,这样短路电流便会减小下来,长允许过流时间。当IGBT关断时,di/dt也减小。限制过电流幅值。IGBT与可控硅的区别IGBT与晶闸管1.整流元件(晶闸管)简单地说:整流器是把单相或三相正弦交流电流通过整流元件变成平稳的可调的单方向的直流电流。其实现条件主要是依靠整流管,晶闸管等元件通过整流来实现。除此之外整流器件还有很多,如:可关断晶闸管GTO,逆导晶闸管,双向晶闸管,整流模块,功率模块IGBT,

9、SITzMOSFET等等,这里只探讨晶闸管。晶闸管又名可控硅,通常人们都叫可控硅。是一种功率半导体器件,由于它效率高,控制特性好,寿命长,体积小等优点,自上个世纪六十年代以来,获得了迅猛发展,并已形成了一门独立的学科。晶闸管交流技术。晶闸管发展到今天,在工艺上已经非常成熟,品质更好,成品率大幅提局J,并向局!压大电流发展。目前国内晶闸管最大额定电流可达5000A,国外更大。我国的韶山电力机车上装载的都是我国自行研制的大功率晶闸管。晶闸管的应用:一、可控整流如同二极管整流一样,可以把交流整流为直流,并且在交流电压不变的情况下,方便地控制直流输出电压的大小即可控整流,实现交流可变直流二、交流调压与

10、调功利用晶闸管的开关特性代替老式的接触调压器、感应调压器和饱和电抗器调压。为了消除晶闸管交流调压产生的高次谐波,出现了一种过零触发,实现负载交流功率的无级调节即晶闸管调功器。交流可变交流。三、逆变与变频直流输电:将三相高压交流整流为高压直流,由高压直流远距离输送以减少损耗,增加电力网的稳定,然后由逆变器将直流高压逆变为50HZ三相交流。直流交流中频加热和交流电动机的变频调速、串激调速等变频,交流频率可变交流四、斩波调压(脉冲调压)斩波调压是直流可变直流之间的变换,用在城市电车、电气机车、电瓶搬运车、铲车(叉车)、电气汽车等,高频电源用于电火花加工。五、无触点功率静态开关(固态开关)作为功率开关

11、元件,代替接触器、继电器用于开关频率很高的场合晶闸管导通条件:晶闸管加上正向阳极电压后,门极加上适当正向门极电压,使晶闸管导通过程称为触发。晶闸管一旦触发导通后,门极就对它失去控制作用,通常在门极上只要加上一个正向脉冲电压即可,称为触发电压。门极在一定条件下可以触发晶闸管导通,但无法使其关断。要使导通的晶闸管恢复阻断,可降低阳极电压,或增大负载电阻,使流过晶闸管的阳极电流减小至维持电流(IH)(当门极断开时,晶闸管从较大的通态电流降至刚好能保持晶闸管导通所需的最小阳极电流叫维持电流),电流会突然降到零,之后再提高电压或减小负载电阻,电流不会再增大,说明晶闸管已恢复阻断。引起IGBT失效的原因1

12、、过热容易损坏集电极,电流过大引起的瞬时过热及其主要原因,是因散热不良导致的持续过热均会使IGBT损坏。如果器件持续短路,大电流产生的功耗将引起温升,由于芯片的热容量小,其温度迅速上升,若芯片温度超过硅本征温度,器件将失去阻断能力,栅极控制就无法保护,从而导致IGBT失效。实际应用时,一般最高允许的工作温度为125。C左右。2、超出关断安全工作区引起擎住效应而损坏。擎住效应分静态擎住效应和动态擎住效应。IGBT为PNPN4层结构,因体内存在一个寄生晶闸管,当集电极电流增大到一定程度时,则能使寄生晶闸管导通,门极失去控制作用,形成自锁现象,这就是所谓的静态擎住效应。IGBT发生擎住效应后,集电极

13、电流增大,产生过高功耗,导致器件失效。动态擎住效应主要是在器件高速关断时电流下降太快,dvCE/dt很大,引起较大位移电流,也能造成寄生晶闸管自锁。3、瞬态过电流IGBT在运行过程中所承受的大幅值过电流除短路、直通等故障外,还有续流二极管的反向恢复电流、缓冲电容器的放电电流及噪声干扰造成的尖峰电流。这种瞬态过电流虽然持续时间较短,但如果不采取措施,将增加IGBT的负担,也可能会导致IGBT失效。4、过电压造成集电极、发射极击穿或造成栅极、发射极击穿。IGBT保护方法当过流情况出现时,IGBT必须维持在短路安全工作区内。IGBT承受短路的时间与电源电压、栅极驱动电压以及结温有密切关系。为了防止由

14、于短路故障造成IGBT损坏,必须有完善的检测与保护环节。一般的检测方法分为电流传感器和IGBT欠饱和式保护。1.立即关断驱动信号在逆变电源的负载过大或输出短路的情况下,通过逆变桥输入直流母线上的电流传感器进行检测。当检测电流值超过设定的阈值时,保护动作封锁所有桥臂的驱动信号。这种保护方法最直接,但吸收电路和箝位电路必须经特别设计,使其适用于短路情况。这种方法的缺点是会造成IGBT关断时承受应力过大,特别是在关断感性超大电流时,必须注意擎住效应。2、先减小栅压后关断驱动信号IGBT的短路电流和栅压有密切关系,栅压越高,短路时电流就越大。在短路或瞬态过流情况下若能在瞬间将vGS分步减少或斜坡减少,

15、这样短路电流便会减小下来,长允许过流时间。当IGBT关断时,di/dt也减小。限制过电流幅值。igbt模块IGBT模块是由MOSFET和双极型晶体管复合而成的一种器件。IGBT模块的选择IGBT模块的电压规格与所使用装置的输入电源即试电电源电压紧密相关。其相互关系见下表。使用中当IGBT模块集电极电流增大时,所产生的额定损耗亦变大。同时,开关损耗增大,使原件发热加剧,因此,选用IGBT模块时额定电流应大于负载电流。特别是用作高频开关时,由于开关损耗增大,发热加剧,选用时应该降等使用。IGBT使用注意事项由于IGBT模块为MOSFET结构,IGBT的栅极通过一层氧化膜与发射极实现电隔离。由于此氧

16、化膜很薄其击穿电压一般达到2030Vo因此因静电而导致栅极击穿是IGBT失效的常见原因之一。因此使用中要注意以下几点:1,在使用模块时,尽量不要用手触摸驱动端子部分,当必须要触摸模块端子时,要先将人体或衣服上的静电用大电阻接地进行放电后,再触摸;2 ,在用导电材料连接模块驱动端子时,在配线未接好之前请先不要接上模块;尽量在底板良好接地的情况下操作。3 ,在应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极与集电极间的电容耦合,也会产生使氧化层损坏的振荡电压。为此,通常采用双绞线来传送驱动信号,以减少寄生电感。在栅极连线中串联小电阻也可以抑制振荡电压。此外,在栅

17、极一发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位升高,集电极则有电流流过。这时,如果集电极与发射极间存在高电压,则有可能使IGBT发热及至损坏。在使用IGBT的场合,当栅极回路不正常或栅极回路损坏时(栅极处于开路状态),若在主回路上加上电压,则IGBT就会损坏,为防止此类故障,应在栅极与发射极之间串接一只10K。左右的电阻。在安装或更换IGBT模块时,应十分重视IGBT模块与散热片的接触面状态和拧紧程度。为了减少接触热阻,最好在散热器与IGBT模块间涂抹导热硅脂。一般散热片底部安装有散热风扇,当散热风扇损坏中散热片散热不良时将导致IGB

18、T模块发热,而发生故障。因此对散热风扇应定期进行检查,一般在散热片上靠近IGBT模块的地方安装有温度感应器,当温度过高时将报警或停止IGBT模块工作。栅极电阻RG对IGBT开关特性的影响IGBT开关特性的设定可受外部电阻RG的影响。由于IGBT的输入电容在开关期间是变化的,必须被充放电,栅极电阻通过限制导通和关断期间栅极电流(IG)脉冲的幅值来决定充放电时间(见图1)。由于栅极峰值电流的增加,导通和关断的时间将会缩短且开关损耗也会减少。减小RG(On)和RG(Off)的阻值会增大栅极峰值电流。当减小栅极电阻的阻值时,需要考虑的是当大电流被过快地切换时所产生的电流上升率didto电路中存在杂散电

19、感在IGBT上产生大的电压尖峰,这一效果可在图2所示的IGBT关断时波形图中观察到。图中的阴影部分显示了关断损耗的相对值。集电极-发射极电压上的瞬间电压尖峰可能会损坏IGBT,特别是在短路关断操作的情况下,因为di/dt上匕较大。可通过增加栅极电阻的值来减小Vstrayo因此,消除了由于过电压而带来的IGBT被损毁的风险。快速的导通和关断会分别带来较高的dv/dt和di/dt,因此会产生更多的电磁干扰(EMI),从而可能导致电路故障。对续流二极管开关特性的影响续流二极管的开关特性也受栅极电阻的影响,并限制栅极阻抗的最小值。这意味着IGBT的导通开关速度只能提高到一个与所用续流二极管反向恢复特性

20、相兼容的水平。栅极电阻的减小不仅增大了IGBT的过电压应力,而且由于IGBT模块中diC/dt的增大,也增大了续流二极管的过压极限。通过使用特殊设计和优化的带软恢复功能的CAL(可控轴向寿命)二极管使得反向峰值电流减小从而使桥路中IGBT的导通电流减小。IGBT与MOS管的区别,可控硅的区别IGBT在结构上是NPN行MOSFET增加一个P结,即NPNP结构,在原理上是MOS推动的P型BJTo可控硅也叫晶闸管,分双向和单向,单向可控硅也是单向导通,可以实现整流,但它通过控制导通角可以实现可控整流程IGBT:绝缘栅场效应晶体管,作用类似三极管,但在这里当开关管用(不能用于放大状态),通过控制G极可

21、以实现C,E两端的通断。一般可用在逆变回路中。门控管(IGBT)的检测方法门控管(IGBT)是由场效应管作为推动管。大功率管作为输出管的有机组合。应用于电磁灶等的大电流、高电平电器中的一种特殊器件。检修中对门控管的检测有如下几种方法:一、万用表检测法11 .用指针式万用表RXlOk挡。黑表笔接门控管发射极,红表笔接门控管栅极,此时向栅极反向充电。随后红表笔接发射极,黑表笔接集电极。万用表指针应不动(指在机械零位)表明该管未击穿损坏。2.用指针式万用表黑表笔接栅极,红表笔接发射极,此时向栅极正向充电。随后黑表笔接集电极,红表笔接发射极,万用表指针指示应为零。3 .如符合以上规律,表明该门控管的饱

22、和导通和截止状态均正常。基本未损坏。二、万用表检测法2用指针式万用表RXlk挡,数字式万用表选测二极管档挡,将门控管集电极、发射极、栅极短接充分放电。万用表黑、红表笔正、反接集电极、栅极和发射极、栅极的电阻,均应为无穷大,否则表明该管已损坏。将万用表黑、红表笔分别接发射极、集电极,测得阻值均为3.5kQ左右,是带阻尼二极管的门控管,测得阻值为50k。是不带阻尼二极管的门控管。如门控管三个电极间电阻均很小。表明该管已被击穿损坏。电阻均为无穷大。表明该管道已开路损坏。电磁炉检修的几个小经验及IGBT注意事项电磁炉里面的IGBT实在是娇气。弄不好几十块钱就没啦!在检修时先去掉加热线圈,。测IGBT的

23、栅级(也就是G点)对地电压。在待机状态下应小于等于0.5V.在开机时应在12.5V之间为正常一前不久修理一个雅乐思电磁炉,G点电压为3,5V,结果加上线圈后,3,4分钟,就爆啦,原因是一个三极管NPN型的击穿,更换后,测G点电压间隔出现1.9V电压,后又接上IOoW灯泡,也是间隔闪亮,最后通电试机,一切OK压敏电阻短路从外表就可以看出来,使用市电不稳的地方压敏损坏率大些。电磁烧igbt原因很多,这里建议修理电磁炉最好可以有台示波器。这样可以方面准确判断故障。这里提供电磁炉爆igbt几大隐患问题。一;同步电路异常(在线圈盘两端的有35个的300k680k2瓦的电阻,接至(J339的其中的一组的上

24、俄器)两端的电压相差应在0.2v之内。待机时电压在3v5v左右,工作时在1.7v左右。二;激励电路的脉宽过宽,尖峰,杂波等(脉宽过宽用示波器,在放上锅时,移走锅时示波器波形瞬间的波形变化不能超过02mv(示波器上两格)三;散热不良四;电路板自身设计存在问题(主要问题:地线不合理,线圈盘电感与电容匹配不良)此类很难解决五;使用早期仙童fga25nl20,fgal5nl20系列的igbt(igbt的后缀编号an和and)电磁炉,特别用此igbt用大功率的电磁炉上,电路设计稍微匹配不良,就很容易引起igbt过热而烧毁。六;一般电容坏的比较多,特别是整流滤波电容5UF275VX2(400VDC),逆程

25、,谐振电容1200V0.3UF,两者都会威胁功率开关管,好一点的炉对前者会有保护功能,对后者,一般都会烧功率开关,所以碰到烧管的炉,一定先检查该电容有无开路,因为该两个电容经常工作在高温环境里,容易容量变小或开路,漏电很多的朋友可能碰到过不少电磁炉间断加热的问题,有的是工作一秒钟就停掉了,再工作一秒,或者有的是几秒,就停掉,再工作几秒,如此反复,还有一种问题,跟这种情况差不多,就是正常放锅的时候就总是在检锅状态,而你把锅拿高一点就可以正常加热,这种问题,往往你检查的时候,却查不到什么问题,什么都换了却问题依旧,对付这种故障,经过本人的多次维修案例和研究,发现问题的根源是走线干扰,一般来说,从高

26、压反馈回来的可能有2到4路,其中同步电路就占了两路,还有一路作浪涌监测,还有一路作高压检测,根据机型不同也许路数就不同,问题的根源呢就在这几条线,解决的方法呢,就是把从反馈电阻到339之间这几路的线路断开,要两边都断,然后再用导线连起来就可以了,也就是说中间的这一截线路不要,从反馈电阻的脚到339的脚完全用线连,这样呢这几条线就没有了干扰,电磁炉也就OK了。这些只是个人的维修经验,有不对的地方请大家批评指正电磁炉的分类及修理事项在修理中常见的电磁炉大致分为两类:由LM339(四电压比较器)输出脉冲信号。1 :触发部分由正负两组电源,管子用PNPNPN组成,类似这种电路,后级大多是用大功率管多个

27、复合而成,组成高压开关部分,在代换中,前一个用带阻尼的行管替代即可。后几个则很难找到特性一致的管子,解决的办法是在散热器安装孔允许的情况下改用大电流的管子以减少数量,金属封装得如:BUSl3A等,塑封的如:BU2525/BU2527/BU2532/D3998一类,用两个就可以。2 :工控管用IGBT绝缘栅开关器件;这些机器特征是不用双电源触发,只有+5V和+12V,LM339通过触发集成块TA8316带动IGBT这种情况下只能用此一类的管子代替,损坏程度大致为,只有管子坏,换上即可。其次是整流桥同时损坏,(一般是烧半壁),再其次是触发集成块TA8316坏,连带LM339N一起损坏的很少见。对于

28、高压模块,由于这方面的参数手册很少,希望大家搜集转贴,以便代换时参考。不能贸然更换,最好有示波器先测其G极波形及幅值(没有的话用万用表测此点直流电压应在1-2.5伏之间变化)。接上线盘前要确定其它几路小电源供电正常。3 .1.2IGBT绝缘栅双极晶体管(IUSUIatedGateBipoIarTransistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压、高速大功率器件。检修电磁炉时需要注意的几点一个正常状态的电磁炉表现为;正常启动,风扇转,正常加热,无锅时能保护并报警。但是如果有故障的话表现多种多样了。我这里有个小方法;在维修之前,建议在输入

29、电源上【插头连线部分】串接150W-200W灯泡作限流,目的是防止造成不必要的损坏,同时观察灯泡的发光情况就可以初步判定故障部位。这样比较省时省力,同时避免走弯路。这里需要说明两点:1 ,串接灯泡和通电前一定要测量电源插头的正反向阻值,只有在大于400欧姆时才可以试电,否则要开机检查。2,维修完成后也可用此方法试机,可避免二次维修和故障扩大化。具体观察结果总结如下;1,上电灯泡就亮;主回路有短路现象。2 ,上电不亮,能启动,但开始加热时灯泡常亮;同步电路或振荡电路有故障。3 ,上电正常,放锅加热灯泡不亮,并同时显示故障代码或每隔三秒左右响一声,说明不检锅,故障主要在同步,震荡,推动或PWM脉宽调制电路和浪涌保护电路等,上瞅复杂。4 ,上电正常,放锅加热,灯泡间歇亮,显示故障代码或隔1-3秒响一声,接假负载也如此,同样说明不检锅,但故障部位在电流检测电路或主回路电容。正常应为,上电正常,不放锅具时灯泡间歇亮,放锅具后常亮,亮度随档位变化。另外;电磁炉易损件为桥堆保险,风扇电机,+5V稳压器【7805】,压敏电阻,大功率电阻,电解电容,电源模块,瓷片和贴片电容。这里还要说明的是,维修时,拆开机盖后可在加热线盘上垫上三个绝缘垫子加锅试机,可以省去多次拆装上盖的麻烦。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号