introductory-econometrics-for-finance--Chapter4-solutions.docx

上传人:夺命阿水 文档编号:780707 上传时间:2023-11-25 格式:DOCX 页数:13 大小:54.30KB
返回 下载 相关 举报
introductory-econometrics-for-finance--Chapter4-solutions.docx_第1页
第1页 / 共13页
introductory-econometrics-for-finance--Chapter4-solutions.docx_第2页
第2页 / 共13页
introductory-econometrics-for-finance--Chapter4-solutions.docx_第3页
第3页 / 共13页
introductory-econometrics-for-finance--Chapter4-solutions.docx_第4页
第4页 / 共13页
introductory-econometrics-for-finance--Chapter4-solutions.docx_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《introductory-econometrics-for-finance--Chapter4-solutions.docx》由会员分享,可在线阅读,更多相关《introductory-econometrics-for-finance--Chapter4-solutions.docx(13页珍藏版)》请在课桌文档上搜索。

1、SolutionstotheReviewQuestionsattheEndofChapter41. Inthesamewayaswemakeassumptionsaboutthetruevalueofbetaandnottheestimatedvalues,wemakeassumptionsaboutthetrueunobservabledisturbancetermsratherthantheirestimatedcounterparts,theresiduals.Weknowtheexactvalueoftheresiduals,sincetheyaredefinedbyli=H一.Sow

2、edonotneedtomakeanyassumptionsabouttheresidualssincewealreadyknowtheirvalue.Wemakeassumptionsabouttheunobservableerrortermssinceitisalwaysthetruevalueofthepopulationdisturbancesthatwearereallyinterestedin,althoughweneveractuallyknowwhattheseare.2. Wewouldliketoseenopatternintheresidualplot!Ifthereis

3、apatternintheresidualplot,thisisanindicationthatthereisstillsomeaction”orvariabilityleftiny?thathasnotbeenexplainedbyourmodel.Thisindicatesthatpotentiallyitmaybepossibletoformabettermodel,perhapsusingadditionalorcompletelydifferentexplanatoryvariables,orbyusinglagsofeitherthedependentorofoneormoreof

4、theexplanatoryvariables.Recallthatthetwoplotsshownonpages157and159,wheretheresidualsfollowedacyclicalpattern,andwhentheyfollowedanalternatingpatternareusedasindicationsthattheresidualsarepositivelyandnegativelyautocorrelatedrespectively.Anotherproblemifthereisa,patternz,intheresidualsisthat,ifitdoes

5、indicatethepresenceofautocorrelation,thenthismaysuggestthatourstandarderrorestimatesforthecoefficientscouldbewrongandhenceanyinferenceswemakeaboutthecoefficientscouldbemisleading.3. Theratiosforthecoefficientsinthismodelaregiveninthethirdrowafterthestandarderrors.Theyarecalculatedbydividingtheindivi

6、dualcoefficientsbytheirstandarderrors.=0.638+0.402及L0.891胃=o.96灰?=o.89(0.436)(0.291)(0.763)f-ratios1.461.38-1.17Theproblemappearstobethattheregressionparametersareallindividuallyinsignificant(i.e.notsignificantlydifferentfromzero),althoughthevalueofR2anditsadjustedversionarebothveryhigh,sothatthereg

7、ressiontakenasawholeseemstoindicateagoodfit.Thislookslikeaclassicexampleofwhatwetermnearmulticollinearity.Thisiswheretheindividualregressorsareverycloselyrelated,sothatitbecomesdifficulttodisentangletheeffectofeachindividualvariableuponthedependentvariable.Thesolutiontonearmulticollinearitythatisusu

8、allysuggestedisthatsincetheproblemisreallyoneofinsufficientinformationinthesampletodetermineeachofthecoefficients,thenoneshouldgooutandgetmoredata.Inotherwords,weshouldswitchtoahigherfrequencyofdataforanalysis(e.g.weeklyinsteadofmonthly,monthlyinsteadofquarterlyetc.).Analternativeisalsotogetmoredata

9、byusingalongersampleperiod(i.e.onegoingfurtherbackintime),ortocombinethetwoindependentvariablesinaratio(e.g.xztW).Other;moreadhocmethodsfordealingwiththepossibleexistenceofnearmulticollinearitywerediscussedinChapter4:-Ignoreit:ifthemodelisotherwiseadequate,i.e.statisticallyandintermsofeachcoefficien

10、tbeingofaplausiblemagnitudeandhavinganappropriatesign.Sometimes,theexistenceofmulticollinearitydoesnotreducetheratiosonvariablesthatwouldhavebeensignificantwithoutthemulticollinearitysufficientlytomaketheminsignificantItisworthstatingthatthepresenceofnearmulticollinearitydoesnotaffecttheBLUEproperti

11、esoftheOLSestimator-i.e.itwillstillbeconsistent,unbiasedandefficientsincethepresenceofnearmulticollinearitydoesnotviolateanyoftheCLRMassumptions1-4.However,inthepresenceofnearmulticollinearity,itwillbehardtoobtainsmallstandarderrors.Thiswillnotmatteriftheaimofthemodel-buildingexerciseistoproducefore

12、castsfromtheestimatedmodel,sincetheforecastswillbeunaffectedbythepresenceofnearmulticollinearitysolongasthisrelationshipbetweentheexplanatoryvariablescontinuestoholdovertheforecastedsample.-Droponeofthecollinearvariables-sothattheproblemdisappears.However,thismaybeunacceptabletotheresearcheriftherew

13、erestrongaprioritheoreticalreasonsforincludingbothvariablesinthemodel.Also,iftheremovedvariablewasrelevantinthedatageneratingprocessforytanomittedvariablebiaswouldresult.-Transformthehighlycorrelatedvariablesintoaratioandincludeonlytheratioandnottheindividualvariablesintheregression.Again,thismaybeu

14、nacceptableiffinancialtheorysuggeststhatchangesinthedependentvariableshouldoccurfollowingchangesintheindividualexplanatoryvariables,andnotaratioofthem.4. (a)TheassumptionofKomoscedasticityisthatthevarianceoftheerrorsisconstantandfiniteovertime.Technically,wewrite(b) Thecoefficientestimateswouldstill

15、bethe“correctones(assumingthattheotherassumptionsrequiredtodemonstrateOLSoptimalityaresatisfied),buttheproblemwouldbethatthestandarderrorscouldbewrong.Henceifweweretryingtotesthypothesesaboutthetrueparametervalues,wecouldendupdrawingthewrongconclusions.Infact,forallofthevariablesexcepttheconstant,th

16、estandarderrorswouldtypicallybetoosmall,sothatwewouldenduprejectingthenullhypothesistoomanytimes.(c) Thereareanumberofwaystoproceedinpractice,including-UsingKeteroscedasticityrobuststandarderrorswhichcorrectfortheproblembyenlargingthestandarderrorsrelativetowhattheywouldhavebeenforthesituationwheret

17、heerrorvarianceispositivelyrelatedtooneoftheexplanatoryvariables.-Transformingthedataintologs,whichhastheeffectofreducingtheeffectoflargeerrorsrelativetosmallones.5.(a)ThisiswherethereisarelationshipbetweenthehandTthresiduals.RecallthatoneoftheassumptionsoftheCLRMwasthatsucharelationshipdidnotexist.

18、Wewantourresidualstoberandom,andifthereisevidenceofautocorrelationintheresiduals,thenitimpliesthatwecouldpredictthesignofthenextresidualandgettherightanswermorethanhalfthetimeonaverage!(b) TheDurbinWatsontestisatestforfirstorderautocorrelation.Thetestiscalculatedasfollows.Youwouldrunwhateverregressi

19、onyouwereinterestedin,andobtaintheresiduals.Thencalculatethestatistic(-J2DW=2=22r-2YouwouldthenneedtolookupthetwocriticalvaluesfromtheDurbinWatsontables,andthesewoulddependonhowmanyvariablesandhowmanyobservationsandhowmanyregressors(excludingtheconstantthistime)youhadinthemodel.Therejection/non-reje

20、ctionrulewouldbegivenbyselectingtheappropriateregionfromthefollowingdiagram:Reject:positiveInconclusiveautocorrelationIIIDonotrejectRejectH:NOevidenceInconclusivenegativeofautocorrelationautocorrelationIIIIodLdu24-du4-dL4(c) Wehave60observations,andthenumberofregressorsexcludingtheconstanttermis3.Th

21、eappropriatelowerandupperlimitsare1.48and1.69respectively,sotheDurbinWatsonislowerthanthelowerlimit.Itisthusclearthatwerejectthenullhypothesisofnoautocorrelation.Soitlooksliketheresidualsarepositivelyautocorrelated.(d) a=四+Bax+故3,+BaZ+w,Theproblemwithamodelentirelyinfirstdifferences,isthatoncewecalc

22、ulatethelongrunsolution,allthefirstdifferencetermsdropout(asinthelongrunweassumethatthevaluesofallvariableshaveconvergedontheirownlongrunvaluessothatyt=yt-etc.)Thuswhenwetrytocalculatethelongrunsolutiontothismodel,wecannotdoitbecausethereisn,talongrunsolutiontothismodel!(e) Ayr=AI+0axli+Psx2t-+3-+匕T

23、heanswerisyes,thereisnoreasonwhywecannotuseDurbinWatsoninthiscase.Youmayhavesaidnoherebecausetherearelaggedvaluesoftheregressors(thexvariables)variablesintheregression.InfactthiswouldbewrongsincetherearenolagsoftheDEPENDENT引variableandhenceDWcanstillbeused.6. Ayr=+Qx*+B4n+A-1Ar2r-1+Bs%+A-4%Themajors

24、tepsinvolvedincalculatingthelongrunsolutionareto-setthedisturbancetermequaltoitsexpectedvalueofzero-dropthetimesubscripts-removealldifferencetermsaltogethersincethesewillallbezerobythedefinitionofthelongruninthiscontext.Followingthesesteps,weobtain=A+Ay+52+Py+P3Wenowwanttorearrangethistohaveallthete

25、rmsinxztogetherandsothatyisthesubjectoftheformula:iys2ft3P3Ay=-52-(APi)v_BBSX(A+A)yx9x1BaBJAThelastequationaboveisthelongrunsolution.7. Ramsey1sRESETtestisatestofwhetherthefunctionalformoftheregressionisappropriate.Inotherwords,wetestwhethertherelationshipbetweenthedependentvariableandtheindependent

26、variablesreallyshouldbelinearorwhetheranon-linearformwouldbemoreappropriate.Thetestworksbyaddingpowersofthefittedvaluesfromtheregressionintoasecondregression.Iftheappropriatemodelwasalinearone,thenthepowersofthefittedvalueswouldnotbesignificantinthissecondregression.IfwefailRamsey,sRESETtest,thenthe

27、easiest“solution“isprobablytotransformallofthevariablesintologarithms.Thishastheeffectofturningamultiplicativemodelintoanadditiveone.Ifthisstillfails,thenwereallyhavetoadmitthattherelationshipbetweenthedependentvariableandtheindependentvariableswasprobablynotlinearafterallsothatwehavetoeitherestimat

28、eanon-linearmodelforthedata(whichisbeyondthescopeofthiscourse)orwehavetogobacktothedrawingboardandrunadifferentregressioncontainingdifferentvariables.8. (a)Itisimportanttonotethatwedidnotneedtoassumenormalityinordertoderivethesampleestimatesofaandorincalculatingtheirstandarderrors.Weneededthenormali

29、tyassumptionatthelaterstagewhenwecometotesthypothesesabouttheregressioncoefficients,eithersinglyorjointly,sothattheteststatisticswecalculatewouldindeedhavethedistribution(forF)thatwesaidtheywould.(b)Onesolutionwouldbetouseatechniqueforestimationandinferencewhichdidnotrequirenormality.Butthesetechniq

30、uesareoftenhighlycomplexandalsotheirpropertiesarenotsowellunderstood,sowedonotknowwithsuchcertaintyhowwellthemethodswillperformindifferentcircumstances.Onepragmaticapproachtofailingthenormalitytestistoplottheestimatedresidualsofthemodel,andlookforoneormoreveryextremeoutliers.Thesewouldberesidualstha

31、taremuch“bigger”(eitherverybigandpositive,orverybigandnegative)thantherest.Itis,fortunatelyforus,oftenthecasethatoneortwoveryextremeoutlierswillcauseaviolationofthenormalityassumption.Thereasonthatoneortwoextremeoutlierscancauseaviolationofthenormalityassumptionisthattheywouldleadthe(absolutevalueof

32、the)skewnessand/orkurtosisestimatestobeverylarge.Oncewespotafewextremeresiduals,weshouldlookatthedateswhentheseoutliersoccurred.Ifwehaveagoodtheoreticalreasonfordoingso,wecanaddinseparatedummyvariablesforbigoutlierscausedby,forexample,wars,changesofgovernment,stockmarketcrashes,changesinmarketmicros

33、tructure(e.g.thebigbang”of1986).Theeffectofthedummyvariableisexactlythesameasifwehadremovedtheobservationfromthesamplealtogetherandestimatedtheregressionontheremainder.Ifweonlyremoveobservationsinthisway,thenwemakesurethatwedonotloseanyusefulpiecesofinformationrepresentedbysamplepoints.9. (a)Paramet

34、erstructuralstabilityreferstowhetherthecoefficientestimatesforaregressionequationarestableovertime.Iftheregressionisnotstructurallystable,itimpliesthatthecoefficientestimateswouldbedifferentforsomesubsamplesofthedatacomparedtoothers.Thisisclearlynotwhatwewanttofindsincewhenweestimatearegression,wear

35、eimplicitlyassumingthattheregressionparametersareconstantovertheentiresampleperiodunderconsideration.(b)1981M1-1995M12rt = 0.0215 + 1.491 rmt?SS=O.189T=1801981M1-1987M1Ort = 0.0163 + 1.308 rmt/?SS= 0.079T=821987M11-1995M12rt = 0.0360 + 1.613 rmt/?SS=0.082 T=98(c) Ifwedefinethecoefficientestimatesfor

36、thefirstandsecondhalvesofthesampleasaand,anda2and2respectively,thenthenullandalternativehypothesesareH0:=sandandHi:a2or2(d) TheteststatisticiscalculatedasTeststat.=RSS-(RSS.+RSS,)(T-2&)0.189-(0.079+0.()82)180-4”,RSSl+RSS2k0.079+0.0822ThisfollowsanFdistributionwith(k,T-2kdegreesoffreedom.尺2,176)=3.05

37、atthe5%level.Clearlywerejectthenullhypothesisthatthecoefficientsareequalinthetwosub-periods.10. Thedatawehaveare1981M1-1995M12 : 0.0215 + 1.491 Rmt/?SS=0.189=1801981M1-1994M12rt = 0.0212 + 1.478 Rmt?SS=O.148上1681982M1-1995M12rt = 0.0217 + 1.523 Rmt?SS=O.182=168First,theforwardpredictivefailuretest-i

38、.e.wearetryingtoseeifthemodelfor1981M1-1994M12canpredict1995M1-1995M12.Theteststatisticisgivenby型g*X =好3 W = 3.832RSSl0.14812Where71isthenumberofobservationsinthefirstperiod(i.e.theperiodthatweactuallyestimatethemodelover),andTiisthenumberofobservationswearetryingtopredict.Theteststatisticfollowsanf

39、distributionwith(Ti,Ti-Qdegreesoffreedom.尺12,166)=1.81atthe5%level.Sowerejectthenullhypothesisthatthemodelcanpredicttheobservationsfor1995.Wewouldconcludethatourmodelisnouseforpredictingthisperiod,andfromapracticalpointofview,wewouldhavetoconsiderwhetherthisfailureisaresultofa-typicalbehaviourofthes

40、eriesout-of-sample(i.e.during1995),orwhetheritresultsfromagenuinedeficiencyinthemodel.Thebackwardpredictivefailuretestisalittlemoredifficulttounderstand,althoughnomoredifficulttoimplementTheteststatisticisgivenbyRSS-RSSi.Ti-k0.189-0.182.168-2n_*=*=().)32RSS、T20.18212Nowweneedtobealittlecarefulinouri

41、nterpretationofwhatexactlyarethe“firstandsecondsampleperiods.Itwouldbepossibletodefine71asalwaysbeingthefirstsampleperiod.ButIthinkiteasiertosaythatTiisalwaysthesampleoverwhichweestimatethemodel(eventhoughitnowcomesafterthehold-out-sample).ThusTiisstillthesamplethatwearetryingtopredict,eventhoughitc

42、omesfirst.Youcanuseeithernotation,butyouneedtobeclearandconsistent.IfyouwantedtochoosetheotherwaytotheoneIsuggest,thenyouwouldneedtochangethesubscript1everywhereintheformulaabovesothatitwas2,andchangeevery2sothatitwasa1.Eitherway,weconcludethatthereislittleevidenceagainstthenullhypothesis.Thusourmod

43、elisabletoadequatelyback-castthefirst12observationsofthesample.11. Bydefinition,variableshavingassociatedparametersthatarenotsignificantlydifferentfromzeroarenot,fromastatisticalperspective,helpingtoexplainvariationsinthedependentvariableaboutitsmeanvalue.Onecouldthereforearguethatempirically,theyse

44、rvenopurposeinthefittedregressionmodel.Butleavingsuchvariablesinthemodelwilluseupvaluabledegreesoffreedom,implyingthatthestandarderrorsonalloftheotherparametersintheregressionmodel,willbeunnecessarilyhigherasaresult.Ifthenumberofdegreesoffreedomisrelativelysmall,thensavingacouplebydeletingtwovariabl

45、eswithinsignificantparameterscouldbeuseful.Ontheotherhand,ifthenumberofdegreesoffreedomisalreadyverylarge,theimpactoftheseadditionalirrelevantvariablesontheothersislikelytobeinconsequential.12. Anoutlierdummyvariablewilltakethevalueoneforoneobservationinthesampleandzeroforallothers.TheChowtestinvolv

46、essplittingthesampleintotwoparts.Ifwethentrytoruntheregressiononboththesub-partsbutthemodelcontainssuchanoutlierdummy,thentheobservationsonthatdummywillbezeroeverywhereforoneoftheregressions.Forthatsub-sample,theoutlierdummywouldshowperfectmulticollinearitywiththeinterceptandthereforethemodelcouldnotbeestimated.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 在线阅读 > 生活休闲


备案号:宁ICP备20000045号-1

经营许可证:宁B2-20210002

宁公网安备 64010402000986号