《化工原理课程设计2-1说明书--乙苯冷却器设计.docx》由会员分享,可在线阅读,更多相关《化工原理课程设计2-1说明书--乙苯冷却器设计.docx(30页珍藏版)》请在课桌文档上搜索。
1、化工原理课程设计2-1说明书题目:乙苯冷却器设计化工原理课程设计(21)任务书一、题目乙苯冷却器的设计二、设计任务及操作条件1处理能力:25万吨/年乙苯2设备形式:列管式换热器3操作条件:乙苯:压力8.0MPa,入口温度115,出口温度一45:冷却介质:自来水,压力0.4MPa,入口温度22,出口温度自定;(3)允许压强降:不大于100KPa;每年按330天计,每天24小时连续运行。三、选择合适的列管式换热器并进行核算1选择合适的换热器;2计算热负荷;3计算温差和估计传热系数;4估算换热面积;5计算管程压降和给热系数;6计算壳程压降和给热系数;7计算传热系数;8校核传热面积。四、设计要求1 .
2、手工计算完成换热器设计与校核;2 .用软件完成换热器的设计、校核;3 .提交电子版及纸板:设计说明书、计算源程序。发出日期2016年7月3日交入日期2015年7月9日指导教师:于英民目录第1章前言1第2章计算与初步选型22.1确定设计方案22.1.1换热器类型22.1.2流体流动空间及流速22.1.3操作时长22.2确定物性数据22.3估算传热面积32.3.1热负荷32.3.2冷却水用量32.3.3逆流平均温差32.3.4初估传热面积32.4工艺结构尺寸32.4.1管径和管内流速32.4.2管程数和传热管数42.4.3平均传热温差校正及壳程数42.4.4传热管排列和分程方法42.4.5壳体内径
3、42.4.6折流挡板52.5初步选型5第3章校核计算73.1 热量核算73.1.1 壳程对流传热系数73.1.2 2管程对流传热系数83.1.3 确定污垢热阻83.1.4 1.4总传热系数83.2茁j4专八、lj*3.3管、壳程压降91. 1.1管程压降93. 12*第4章EDR设计与校核114. 1初步规定114.1 *1nS114.1.2壳体和封头114.1.3换热管114.14/ftbc*114.1.5换热器方位114.2设计结果与分析H4.2.1名吉木*144.2.2面积余量144.2.3压降144.24/L154.2.5传热系数154.2.6传热温差154.3154.3.1面积余量1
4、84.3.2压降184.3.3184.3.4传热系数184.3.5热阻分布184.4EDR1118第5章结论19致谢20参考文献第1章前言第1章前言在工业生产中,为了满足工业流程的需要,往往需要对物料进行各种不同方式的热量变换,如:加热、冷却、蒸发和冷凝等,换热器就是用来实现上述热量交换与传递的设备。通过各种换热设备,可以使热量从温度较高的流体传递给温度较低的流体,以满足生产工艺的需要。换热器是许多工业生产中常用的设备,在化工、石油、动力生产、制冷、食品等行业中应用广泛。换热器在设计或选型时应满足以下基本要求:(1)合理地实现所规定的工艺条件;(2)结构安全可靠;(3)便于制造、安装、操作和维
5、修;(4)经济上合理。换热器有的以回收热量为目的,用于余热回收;有的以保证安全为目的,防止温度过高损坏设备。换热器的作用不同,其设计选型运行工况也各不相同。本次设计的乙苯冷却器是换热设备的一类,用以冷却流体,通常以水或空气为冷却剂,有间壁式冷却器、喷淋式冷却器、夹套式冷却器和蛇管式冷却器等。本次设计首先根据所要完成的换热任务,计算相应的换热参数,然后根据国家标准初步选择合适的换热器,再对所选换热器进行校核计算,最终确定满足工艺生产要求的换热器。本次课程设计,旨在让学生把书本知识运用到实践,提高灵活运用所学知识分析问题和解决问题的能力,更好的掌握基本知识,培养工程实际观念,具备化工设备初步设计的
6、能力。第2章计算与初步选型2.1 确定设计方案2.1.1 换热器类型两流体温度变化情况:热流体入口温度115,出口温度45;冷流体(自来水)入口温度22,设计出口温度30。逆流平均温差:tm加|-42_ (115-30)-(45-22)1排In年迎t2(45-22)=47,43 乙苯压力为05Mpa,自来水压力为0.4MPa,考虑到水易结垢,故选定水走管程,乙苯走壳程,采用固定管板式换热器。2.1.2 流体流动空间及流速选用中19wwx2三的碳钢管,初定管内流速为0.8ms.2.1.3 操作时长每年按330天计,每天24小时连续运行。2.2确定物性数据由EDR软件可查得两流体在各自定性温度下的
7、物性参数如下表:表21冷热流体物性参数表名称乙苯水定性温度/C8026密度kgm,811.24998.11热容kJ(kgC尸1.8174.191黏度/mPas0.35980.8763导热系数/科(苏.。C尸0.11530.60182.3估算传热面积2.3.1热负荷按乙苯计算,即:=(-)=(25107)(330243600)1.817103(l15-45)=1.115106W2.3.2冷却水用忽略热损失,则冷却水用量为:W2 =l.H51064.191xl()3(30-22)=33.26kgs2.3.3逆流平均温差由两流体进出口温度可得逆流平均温差:t_(U530)(45-22)In也” t9
8、(45-22)=47.43 2.3.4初估传热面积按石油化学工程原理中表6-7选K=480W(.oC),则传热面积S=-L115xl048.98m-Kktm、逆 480x47.43考虑15%的面积裕度S=1.15Sr=1.1548.98=56.32m22.4工艺结构尺寸2.4.1 管径和管内流速选用(DI的碳钢管,初定管内流速为0.8ms2.4.2 2管程数和传热管数根据传热管内径和流速确定单程传热管数=235.8236 (根)V_33.26/998.11(-4)J-0.7850.01520.856.322363.140.019按单管程计算,所需传热管长度为=4.00m综合考虑传热面积、管数和
9、管长等因素,选取传热管长=4.5m,换热器管程数为1,根据单管程换热器标准,取管子数为174根。2.4.3 3平均传热温差校正及壳程数= 0.08602t,3022-r,i5-45= 8.75Ty-T2115-45“2一430-22按单壳程结构查单壳程犷-P-R图,得材=0.98tm=0.9847.43=46.48C2.4.4 4传热管排列和分程方法采用正三角形错列排管方式,取管心距E=1.25,,则管心距r=1.251925IrUn横过管束中心线的管数t=1.197V=1.1974=16(根)2.4.5 壳体内径采用单管程结构,取管板利用率=0.7,则壳体内径D=1.05tyN=1.0525
10、1740.7=413.9mm根据换热器壳径的标准,圆整取0=40Omm。2.4.6 折流挡板采用弓形折流挡板,取弓形折流挡板圆缺的高度为壳体内径的25%,则切去圆缺的高度为:/?=0.25400=100mm取折流挡板间距3=0.75。,则B=0.75400=300mm折流挡板数为:v传热管长145001”小、NL折流板间距(块)折流挡板圆缺面水平装配。2.4.7 折流挡板(1)壳程流体(乙苯)进出口接管:取管内乙苯流速为Loms,则j4V48.768/811.24八d=J=J=0.117muV3.14x1.0取标准管径为100mm(2)管程流体(自来水)进出口接管:取管内自来水流速为1.5ms
11、,则z74V/4x33.26/998.1八“父a=J=J=0.168muV3.141.5取标准管径为200mm2. 5初步选型考虑到两流体温差较大(t=38.42C),且冬季操作时冷却水进口温度会降低,因此壳体壁温和管壁温相差较大,故选用带膨胀节的BEM系列管壳式换热器较为合适。根据计算得到的各工艺结构尺寸,参照化工原理课程设计附录5中固定管板换热器主要工艺参数表(19削x2加n换热管)选取的换热器型号为:BEM400-45.7-1,其结构尺寸如下:0.519表22初选换热器主要工艺参数表型号0445BEW400-2-45.7-:-I0.519公称传热面积45.7m2管程流通面积0.0307m
12、2壳体内径400mm管心距25mm管子总数174壳中心管排管子根数14有效管长4.5m管子排列方式正三角形错列管子规格I9mm2mm折流板间距30Omm管程数I折流板总数14第3章校核计算3.1热核算3.1.1壳程对流传热系数对于具有圆缺形折流挡板的壳程,可采用多诺霍公式:a0=0.23(也竺)。6(3(上_严4=0.23RetP出MWUAv对于此换热任务,匕1由SC=S(ZV-X)得Sc=B(Ds,-nedo)=0.3(0.4-140.019)=0.0402/选用折流挡板拱高与壳径之比为0.25,查得弓形面积系数Kt为0.154弓形面积:S=K,D;=0.154OT=0.0246则折流挡板缺
13、口内的管子根数:0.0246n=X174=340.42-4由Sz,=Kj-鸳?力得:Sh=K,D-nw-4=0.1540.42-34-0.0192=0.0150m2bu44Sf,m=yS=0.04020.0150=0.02462dnno8.768z/r。0.019R=00246=18822M43.598104dCPJML817x1033.59810-4,Prtl=-二=5.670r040.1153故%=0.2301153X18822065.67,z3=913.69W/(.。C)0.0193.1.2管程对流传热系数判断流动状态:m,33.26ui=,P2Si998.11x0.0307=1.085
14、w/s_diuip2“ei_0.015x1.085x998.11_8.76310-41.85104104属湍流流动,且流体被加热,故4=0.0234I20.8zX0.4CpMP,=.4.19110-8.763106j030.6018由%=0.023宗RJE4得:q=0.023”怨0.015(1.85104)o86.10304=4940.12W/(1120C)3.1.3确定污垢热阻查化工原理课程设计附录3污垢热阻值得:/?w.=0.000172112oCWRm=O.000174机2.C/W3.1.4总传热系数K。=1d丁,方+凡+4114940.12+0,000172)j+2,5X1045319
15、1-X+0.000174+!17913.69=554.07W/(w20C)与初选总传热系数相比:AL=2坦=1.154K选480比值在1.1-1.25之间,选型合格。3. 2所需传热面积所需传热面积:AoCJ5叽 43.3(加554.07x46.48实际传热面积:Ao=45.7裕度=jVl100%=457433X1OO%=5.55%443.3即有5.55%的富裕面积。3.3管、壳程压降3.1.1 管程压降根据Rei=1.85XlO4查管内流动范宁摩擦系数图得ft=0.009贝IJ=4/.=4x0.009=0.036对于液体而言,=1.41.5,根据本换热器的管程尺寸,取4=1.5所以:2=KN
16、n+p4510852=1.5l(0.0362)-998.110.0152=11.280%Pa管程压降小于100H%,在合理范围内。3.1.2 壳程压降”工(Ma匕)=以鹏A(N*)与+Nzf(35-竿)争.夕因为5c=0.0402h28.768811.24 0.0402= 0.269?/ sReC= 1.151044MgOoI9x02689x811.24M-3.598104由于Ree500,则4=5七/228=5(1.151O4由的=o.593S6=0.0150n2则有K=叫SbPb8.768811.240.0150= 0.72 Iw/5壳程总压降M=(1+f52)其中匕=尸4%(N“+1)夕
17、=0.50.59314(14+1)811.24=1.828初。XPLNBG5-哈安p=I14(3.5-)811.240.42=5.904APa则=L15X(1.828+5.904)=8.89IZPa管程压降小于100x%,在合理范围内。根据以上计算,可认为所选BEM400-丝-45.7-纪-1换热器在传热及压0.519降两方面基本可以满足要求。第4章EDR设计与校核4.1 初步规定1.1. 1壳程压降因冷却水易结垢,为便于污垢清洗,故选择冷却水走管程热流体走壳程。1.2. 2壳体和封头换热流体为乙苯和冷却水,选择B封头管箱;冷热流体温差较大,选择带有膨胀节的固定管板式换热器,后端选择M,壳体形
18、式选择单壳程;因此,换热器类型选择BEM01.3. 3换热管选用外径19mm,壁厚2mm的碳钢换热管,排列方式为正三角形错列,管心距25mmo1.4. 4折流板选单弓形折流板。1.5. 5换热器方位换热器水平放置,折流板切口方向为水平方向。4.2设计结果与分析在EDR软件中选择Shell&Tube设计模式;ApplicationOptions中选择热流体在壳程一侧,纯液体换热,无相变化;在PrOCeSSData中输入冷热流体进出口温度、操作压力、允许压降和管内外壁污垢热阻;在PrOPertyData中选择冷热流体并获得其在各自进出口温度范围和操作压力下的物性参数。运行软件,可得初步设计结果如图
19、41所示:OverallPerformanceResistanceDistributionInter-ShdlConditionsHotStreamCompositionColdSUeamCompositionDesignShellSideTubeSideTotalmassflowratekg/sVapormassflowrate(ln0ut)kg/sLiquidma$flowratekg/sVapormassqualityTemperatures座DewIBubblepointOperatingpressuresbar8O8.768O1155768O8.768O454.388633033.2
20、602243.26033.260303.69485Filmcoefficient(mean)Foulingresistance(ODbased)m?K/WVelocity(highest)m/sPressuredrop(allowcalc.)2189.8.000171.731/.611377651.3.000222.471/.30515TOtalheatexchangedkW1115.9Overallcleancoef(plain/finned)1579/Overalldirtyef(plaininned)W/(m?K)972.6/EffeCtivearea(plain/finned)m?24
21、.8/EffectiveMTD047.92ActuaIZrequiredarearatio(dirclean)1.04/1.68Vibrationpcoblem(Tasc/TEMA)No/NoRhoV2PrObIemNoUnitBEM1pass1set1parShelsize2575400mmHorTUbeSPlainInsertNoneNo.78OD19.05Tks211m11.Pattern30Pitch23.81mmBafflesSinglesegmentalCut(/d)33.98Totalcost10691DoIIar(US)HeatTransferResistanceSheBsid
22、e/Fouling/Wall/Fouling/TubesideShelSideITUbeSide(a)OverallPerformancePressureDropThermosiphonPipingThermosiphonPipingElementsPressureDropShellSideTubeSideMaximumallowed11Totalcalculated.61137.30515Gravitational00Ffictional.61221.30507Momentumchange-.00084.00008Pressuredropdistributionm/sbarNdPm/sbar
23、%dpInletnozzle1.37.009561.561.79,014444.73Enteringbundle1.062.47.015014.92InsidetubesInletspaceXflow1.03.013572.222.472.47.243179.69BundleXflow1.731.6.3237652.88Bafflewindows1.171.08.2305437.66OutletspaceXflow.96.01318215Exitingbundle1.092.47.023437.68OutletnozzleLiquidoutletnozzleVaporoutletnozzleI
24、ntefmediatenozzles2.18.021613.531.79.00912.98FlowAnalysisThermosiphonsandKettlesShellSideFlowFractionsInletMiddleOutletDiam.ClearancemmCrossflow.83.44.62Window.73.52.72BafHehole-tubeOD.16.29.16.79BaffleOD-shellID.11.2,113.18ShellID-bundleOTL.1.08.1112.7PasslanesOOORho*V2analysisFlowAreamm?Velocitym/
25、sDensitykg/m?RhoV2kg(ms?TEMAlimitkg(ms?Shellinletnozzle82131.37779.7914622232Shellenhance147%.76779.794505953Bundleentrance105631.06779.798845953Bundleex95261.09843.3810045953Shellexit64861.6843.3S21675953Shelloutletnozzle47692.18843.364007mm?m/skg/m?kg(ms?kg(ms?TUbeinletnozzle18631.79998.653188928T
26、Ubeinlet134802.47998.656096TUbeoutlet134802.47997.346104TUbeoutletnozzle186391.79997.343193(c) FlowAnalysisOveralSummary1Size257.45x5400mmTypeBEMHorConnectedin1parallel1series2SurfZUnit(gro$/eff/firmed)25.2/24.8/m?SheBsZunit134SurfZShell(gross/eff/finned)25.2I24.8m?5DesignPERFORMANCEOFONEUNIT1213141
27、516171819202122232425262728293031Shell SideTube SideHeat Transfer ParametersProcess DataInOutInOutTotal heat loadkW1115.9Total flowkg/s8.76833.26Eff. MTD/1 pass MTD爆47.92 / 47.(Vaporkg/s OOOOAcluaIZReqd area ratio IouIedZcIean1.04 / 1.6Liquidkg/s 8.7688.76833.2633.26Noncondensablekg/sOOCOef./Resist.
28、W(m?K)m?K/W%CondTEvapOOOverallfouled972.6.00103Temperature115452230Overall dean1579.00063Dew / Bubble pct府Tube side film7651.3.0001312.71QualityOOOOTube side fog4527.1.0002221.48Pressure (ab$)bar 54.386343.69485TutewaU2176.2.000054.47Delta P allow/CaICbar 1.61137130515Outsidefouling5747.1.0001716.92
29、Velocibm/s 1.731.62.472.47Outsidefilm2189.8.0004644.41Liquid PropertiesShell Side Pressure Dropbar%Den浏kg/m? 779.79843.36998.65997.34Inlet nozzle.009561.56ViscosiymPa s .2663.51449667998Inlet space Xflow.01357222Specific heat kJ(kgK) 1.8991.7494.1934.19Baffle Xflow.3237652.88Therm cond W(mK) .1046.1
30、261.5964. 607Baffle window.2305437.66Surface tensionN/mOutlet spaceflow.013182.15Molecular weight106.16106.1618.0118.01Outlet nozzle.021613.53Vapor PropertiesIntefmedte nozzleDensitykg/m?Tube Side Pressure Dropbar%ViscosiymPa $Intel nozzle.014444.73Specific heat kJ(kg K)Erteringtubes.015014.92Therm,
31、 cond W(m K)Insrie tubes.243179.69(d) OverallSummaryTEMASheet|HeatExchangerSpecificationSheet123456Size2575400mmTypeBEMHocConnectedin1parallel1series7Surfunit(eff.)24.8m?SheIIsZunit1SurfZshefl(eff.)24.88PERFORMANCEOFONEUNIT9FluidalocationShelSideTubeSide10FluidnameC8H10H2011Fluidquantity,TOtalkg/:8.
32、76833.2612Vapor(lr0ut)000013Liquid8.7688.76833.2633.2614Noncondensabtekg/:00001516TemPefatUIe(ln0ut)11545223017Dew/Bubblepoint18DensyVaporZLiquid/779.79/843.36/998.65/997.3419ViscositymPaS/.2663/.5144/.966/.799820MolecularWtVaP21MolecularWtNe22SpecificheatkJ(kgK)/1.899/1.749/4.193/4.1923Thermalcondu
33、ctivityW(mK)/.1046/.1261/.5964/.60724Latentheat25Pressure(abs)54.3886343.6948526Velocitym/s1.732.4727Pressuredrop,allow./calc.1.611371.3051528Foulingresist(min)m?K/W,00017.00017.00022Aobased29Heatexchanged1115.9kWMTDConeCted47.9230Transferrate.Service937.2Dirty972.6Clean1579(e) TEMASheet图4-1EDR设计结果图
34、示(a)OverallPerformance;(b)PressureDrop;(c)FlowAnalysis;(d)OverallSummary;(e)TEMASheet4.2.1结构参数换热器形式为单台1管程BEM换热器,壳体内径257mm,管长5400mm,管子78,管外径19.05mm,管壁厚2.11mm,管子排列方式为正三角形,管心距23.81mm,单弓形折流板,圆缺率33.98%。4.2.2面积余量面积余量为0.04,需在校核模式中调整。4.2.3压降壳侧压降0.61137bar,管侧压降0.30515bar,均小于允许压降。4.2.4流速壳侧最高流速为1.73ms,管侧最高流速为2
35、.47ms,相对于经验流速偏高,需要在校核模式中调节。4.2.5传热系数总传热系数为972.6W/(X),大于经验值。4.2.6传热温差为47.92C,与第2章中计算结果相近。4.3校核模式根据设计结果,在热交换器型式与基本参数第2部分:固定管板式换热交换器(GB/T28712.2-2012)中选择最为接近的规格进行圆整,壳体内径400mm,管长4500mm,管子根数为174,管外径19mm,管壁厚2mm,管子排列方式为正三角形,管心距25mm,圆缺率25%,单弓形折流板。校核结果如图4-2所示:OveralSummary|1Size380X4500mmTypeBEMHorConnectedi
36、n1parallel1series2SUrfJnit(gro$SyeHAinned)46.7/45.9/Shells7un13SurfZSheKgrowZefWinned)46.7I45.9I45Rating/CheckingPERFORMANCEOFONEUNIT6ShellSideTubeSideHeatTranSferParameters7ProcessDataInOutInOutTotalheatloadkW1115.98Totdflowkg/s.76833.26Eff.MTD/1passMTD霰47.92/47.899Vapockg/$0000ActuaIZReqdareara(io
37、fouled/CIean1.22/1.6110Liquidkg/s8.7688.76833.2633.2611Norcondensabtekg/$00CoefZResist.W(m7Kjm7KX12Cond/Evap.00Overallfouled617.8,0016213TemPeraUe移115452230Overalldean813.8.0012314Dew/Bubblepoint华Tubesidefilm4031.1.0002515.3315QuaBy0000Tubesidefog4590.00022134616Pressure(abs)bar54.9277843.92194Tubew
38、al23098.0000426717DeltaPalow/calcbar1.072221.07806Outsidefouling5814.0001710.6318Velocitys.43.391.081.08OutsideHm1066.8.0009457.91Iq20LiquidPropertiesShellSidePressureDropbarX21Densitykg/m?779.7343.36998.65997.34InIanozZle.0101414.0122ViscosimPas.2663.5144.966.7998InletspaceXflow.004185.7823Specific
39、heatU(kgK)1.8991.7494.1934.19BaffIeXflow.0194826.9224Therm,cond.W(mK).1046.1261.5964.607Bafflewindow.0172323.8125SurfacetensionNZmOutetspaceflow.004155.7426Molecularweight106.16106.1618.0118.01Outletnozzle.0171823.7427VaporPiopeitiesIntefmedatezzle28Densitykg/m?TubeSidePressureDropbar%29ViscositymPa$Inletnozzle.015612030SpecificheatLlkj)Ente