《咋回事?你的4.7μF电容变成了0.33μF电容?.docx》由会员分享,可在线阅读,更多相关《咋回事?你的4.7μF电容变成了0.33μF电容?.docx(6页珍藏版)》请在课桌文档上搜索。
1、几年以前,经过用瓷片电容的25年多工作之后,我对它们有了新的领悟。那时我正在忙于做一个LED灯泡驱动器,当时我项目中一个RC电路的时间常数显然是有问题。我第一个假设是:电路板上某个元件值不正确,于是我测量用作一个分压器的两只电阻,但它们都没有问题。我把电容从电路板上拆下来测量,也没有问题。为了进一步确认,我测量并装上了新电阻和新电容,给电路上电,检查发现基本运行正常,然后看更换元件是否解决了RC电路时间常数问题。但答案是否定的。我是在自然的环境下测试电路:在外壳内,电路处于外壳内,模拟了一个屋顶照明灯的“罐子”。有时元件温度会升到100多摄氏度。虽然我重新测试RC电路的时间很短,一切仍非常烫手
2、。显然,我的下一个结论是:问题在于电容的温度变化。但是我自己都怀疑这个结论,因为我用的可是X7R电容,根据我的记忆,这种电容最高可工作到+125C,变化也只有15%.我信任我的记忆力,但是为了保险起见,我重新查看了所使用电容的数据表。背景报告表1给出了用于不同种类瓷片电容的字母与数字,以及它们各自的含义。表格描述了ClassII和ClassIII两种瓷片电容。这里不谈太多细节,ClassI级电容包括常见的COG(NPO)型;这种电容的体积效率不及表格中的两种电容,但是它在多变环境条件下要稳定得多,而且不会出现压电效应。相反,表格中的电容具有广泛多变的特性,它们能够扩展并承受所施加的电压,但有时
3、会产生可听到的压电效应(蜂鸣声或振铃声)。FtCharscteClowtmp8oondcharacter:hightmpInIinlcMractr:Chan9ovrtwnpKax)CharTmpCQNumTMnPrC)CMrChan9().Z10245AilY304B1.5X69665CI2?一6105D7125EM7一一ISOF17.5一9200P110-一Rt15一一.一S22一一T221-33一一一U22,-56一-一一VtZ-i在给出的多种电容类型中,据我的经验,最常用的是X5R、X7R,还有Y5Y.我从来没用过Y5V,因为它们在整个环境条件区间内,会表现出极大的电容量变化。当电容公司
4、开发产品时,他们会通过选择材料的特性,使电容能够在规定的温度区间(第一个和第二个字母),工作在确定的变化范围内(第三个字母;表1)。我正在使用的是X7R电容,它在-55C至J+125C之间的变化不超过15%.所以,要么我是用了一批劣质电容,要么我的电路其它部分有问题。不是所有的X7R电容都一样既然我的RC电路时间常数问题无法用特定温度变量来解释,就必须深入研究。看着我那支电容的容量与施加电压的数据,我惊奇的发现,电容随着设置条件的变化量是如此之大。我选择的是一只工作在12V偏压下的16V电容。数据表显示,我的4.7-F电容在这些条件下通常是提供1.5UF的容量。现在,就完全能解释RC电路的问题
5、了。数据表显示,如果我把电容封装尺寸从0805增加到1206,在规定条件下的典型电容量将是3.4F.这表明有进一步研究的必要。我发现村田制作和TDK在网站上提供了很好的工具,能够绘出不同的环境条件下的电容量变化。我对不同尺寸和额定电压的4.7UF电容做了一番研究。图1数据是取自村田的工具,针对几种不同的4.7HF瓷片电容。我同时观察了X5R和X7R两种型号,封装尺寸从0603至U1812,额定电压从6.3到25Vde.首先我注意到,随着封装尺寸的增加,随所施加直流电压的电容量变化下降,并且幅度很大。DC VOLTAGE M1812-X7R-25V121O-X7R-25V1210-X5R-25V
6、1210-X5R-16V1206-X7R-25V1206-X7R-16V1206-X7R-10V1206-X5R-25V1205-X5R-16V12O6-X5R-1OV1205-X5R6.3V0Ck三-X7R-16V0805-X7R-10V0806-X5R-16V0805-X5R-10VOOS-5R.3VOe03-X56.3V图一本图描绘了所选4.7-F电容上直流电压与温度变化量的关系,如图所示,随着封装尺寸的增加,电容量随施加电压的而大幅度下降。第二个有趣的点是,对于某个给定的封装尺寸和瓷片电容类型,电容的额定电压似乎一般没有影响。于是我估计,如将一只额定25V的电容用于12V电压,则其电容
7、变化量要小于同样条件下的额定16V电容。看看1206封装X5R的曲线,显然额定6.3V元件的性能确实优于有较高额定电压的同类品种。如果我们检验更大范围的电容,就会发现这种情况很常见。对于我研究的那些电容样本集,并没有展示出普通瓷片电容应有的表现。观察到的第三个问题是:对于同样的封装,X7R电容的温度敏感度要高于X5R电容。我不知道这是否普遍适用,但是在我的实验里似乎是这样。从图中可以看出,表2显示了X7R电容在12V偏压货款,电容量的减少量。注意,随着电容封装尺寸逐步增加到1210,电容量有着稳步的增长,但是超过这个尺寸就没有多大改变了。CAPACITANCEOFX7RCAPSWITHA12V
8、BIASStzoC(IJF)%ofNominal08051.5332.612063.437312104J68.51812W86.9Nominal4.7100NOMINAL CAPACfTANCE (%)选择正确的电容在我的例子中,我为4.7F的X7R电容选择了最小的可用封装,因为尺寸是我项目的一个考虑因素。由于本人的无知,因而假设了任何一种X7R都与其它X7R有相同的效果;而显然,情况并非如此。为使我的应用得到正确的性能,我必须采用某种更大的封装。我真的不想用1210封装。幸运的是,我可以把所用电阻值增大5x,因而电容量减少到了IuFo图2是几种16V、1uFX7R电容与16V.4.7FX7R
9、电容的电压特性图。0603的IuF电容和0805的4.7UF电容表现相同。0805和1206的1HF电容性能都略好于1210的4.7HF电容。因此,使用0805的IUF电容,我就可以保持电容体积不变,而偏压下电容只降到额定量的大约85%,而不会到30%。但我还是困惑。我曾认为所有X7R电容都应该有着相同的电压系数,因为所用的电介质是相同的,都是X7R。所以我向一位同事,日本TDK公司的现场应用工程师克里斯?伯克特请教,他也是瓷片电容方面的专家。他解释说很多材料都能满足“X7R”资格。事实上,任何一种材料,只要能使器件满足或超过X7R温度特性(即在-55C至J+125C范围内,变化在15%),都
10、可以叫做X7R。伯克特也解释说,并没有专门针对X7R电容或任何其他类型瓷片电容的电压系数规范。这是一个关键的要点,因此我要再重复一遍。只要一个电容满足了温度系数规范,不管其电压系数多么糟糕,厂商都可以把这个电容叫做X7R电容(或者X5R,或其他任何类型)。这个事实印证了任何一位有经验电器工程师都知道的那句准则(双关语):去读数据表!由于厂商越来越倾向于小型元件,所以他们不得不对使用的材料作出妥协。为了用更小的尺寸获得所需要的体积效率,他们被迫接受了更糟糕的电压系数。当然,有信誉的制造商会尽量减少这种折中的副作用。结论是,在使用小封装瓷片电容的时候(实际在使用任何元件的时候),阅读数据表都极为重
11、要。但很遗憾,通常我们见到的数据表都很简短,几乎无法为你做决定提供任何需要的信息,所以你必须坚持让制造商给出更多的信息。那么被我否定的Y5V电容怎么样呢?纯为好玩,我们来研究一个普通的Y5V电容。我选择的是一个4.7uF、0603封装的额定6.3V电容)我不会提制造厂商,因为它的Y5V电容并不劣于任何其他厂商的Y5V电容),并查看它在5V电压和+85C下的规格。在5V电压下,典型的电容量比额定值低92.9%,或为0.33nF。这就对了。如果给这个6.3V的电容加5V偏压,则其电容量要比额定值小14倍。在OV偏压+85C时,电容量会减少68.14%,从4.7IIF降至1.5F。现在,你可能觉得,
12、在5V偏压下,电容量会从0.33降至0.11UF。幸运的是,两个效应并没有以这种方式结合到一起。在这个特例中,室温条件下加5V偏压的电容变化要差于+85C。明确地说,这个电容在OV偏压下,电容量会从室温的4.7F降到+85C的L5UF;而在5V偏压下,电容量会从室温的0.33F增加到+85C的0.39F这个结果应该让你信服了,真的有必要仔细查看元件规格。着手处理细节这次教训之后,我再也不会向同事或消费者推荐某个X7R或X5R电容了。我会向他们推荐某家供应商的某种元件,而我已经检查过该元件的数据。我也提醒消费者,在考虑制造的替代供应商时,一定要检查数据,不要遭遇我的这种问题。你可能已经察觉到了更大的教训,那就每次都要阅读数据表,无一例外。如果数据表上没有足够的信息,要向厂商要具体的数据。也要记住,瓷片电容的命名X7R、Y5V等跟电压系数毫无关系。工程师们必须检查了数据才能知道(真正地知道)某种电容在该电压下的性能如何。最后请记住:当我们持续疯狂的追求更小尺寸时,它也成为了每天都会遇到的问题。