《外文翻译-内燃机冷却风扇设计的新方法.docx》由会员分享,可在线阅读,更多相关《外文翻译-内燃机冷却风扇设计的新方法.docx(9页珍藏版)》请在课桌文档上搜索。
1、NewDesignMethodForEngineCoolingFanHuangHongbinzhengShiqinLiuShuyanYanWeige(SchoolofVehicularEngineering,BeijingInstituteifTechnology,Beijing100081)AbstractAimToputforwardatypeofmathmodelforoptimizingfan,stwistinglaw.MethUdSThismathmodelwasbasedonturbo-machineryeulerequalionsandcalculusofvariation,it
2、wasconductedforoptimizingtheaerodynamicparametersalongthebladeheightofthefanandthemathmethodwasproducedfortheoptimizationoffanstwistinglaw.Resultsthetype6102Qenginecoolingfanwasoptimizedbyuseofthismodelandthecalculationdatawerecontrastedwiththoseofiso-reactioncoefficiencyflowtypeandfreevortexflowtyp
3、e.Someproblemsexistinginlongbladecanbesolvedbyuseofabovemelhod.ConclusionThedesignparamtersneedntbedeterminedartificially,socalculatingresultsaremorerationaltoahighdegreethanthatfromothermethods.Keywords:coolingfan,twistinglaw,optimumdesignThedesignoffanhasbeenahardworkontheorientationofaerodynamics
4、becauseoftheomlicatedflowthroughtheblades,sothefanhadbeendesignedbyuseofkaufantheory.Thislawbelievesthattheflowthroughthefanbladesisofone-dimension,theairflowparametersatthemeanbladediameteraretakenintoaccount,buttheflowthroughtherootandtipisnegative.Afterthat,fanwasprojectedaccordingtothesimplyradi
5、albalanceequation.Numericalprecisionwasenhancedbyuseofcompletelyradialequilibriumequationandiso-reactionfactorOftwistinglawtodeterminetheair-flowparametersalongthebladeradialdirection,sotheflowlossesoftipandrootarelessentocertainextent.Inthispaper,theauthorsputforwardamathmodelforoptimizingairflowpa
6、rameteralongbladeheightbyuseofeulerequationsandcalculusofvariation.1 .MATHMODELWhiletheminutematterGflowsaroundthebladewhichisformedbytwoneighboringflowsurfaces,accordingtoEulerCqUatiOn,fanspowerisP=o;(v2ur2-vur)G(1)Whereistheangularvelocityofthefan,vluisthecircumferentialspeedatthefaninlet,v2uisthe
7、circumferentialspeedatfanoutlet.rlisthefaninletradius,r2isIhefanoutletradius.Forthecaseofnon-guideblade,Eq.(l)becomesP=V2w2G(2)Wcsetuptherelationsbetweenrlandr2byuseoftheflowfunctionbasedoncontinuityofflow.Theflowfunctionisconstantalongtheflowsurface,andthethoroughfaresurfaceofflowpassageregioniscon
8、sideredasflowsurface.Thus,wehavethedefinitionoftheflowsurfaceG=2(3)SubstituteEq.(3)intoEq.(2).andintegralEq.(2),thenrP=2乃&LV2u22-v -巨产+ 4(%) + 4仇)寿/21-4仇)w/q -4伍)02%i石5(15)Where () and 4(%) are Iagrangian multipliersAccording to the relation of aerodynamics, the relationship of densities between inl
9、et and outlet areThusP2 =自口 +伏+ 1)够/(2心)严1)总=(D阮+吟(16)(17)Where vl is inlet sound speed. % 依 OUHel sound speed.For the extreme value problem of Eq.(12),we make use of the Euler-Iagrangian equations5Fv2r7- = Rrf20 =0, aGVifv2uSF2v2rqn1 C- =亏小2(r0)户2 一心 = &喔*&%2;FG(8)F _ 2 忆。2.沙岩一/仆;,4 = 0,(9-M(T)=-4(
10、%)P|vIr-4(G)1vIr-0=0,%rfl%4色声)叱%/22 2詈会-4()p2 -乙2。2(20)-/-%(%)。此一少1=0打GWhere(21)也=5vIp-(l+)w+2f/?-年-g严FromEq.(18)wehaveVr=0,IntegratingEq.(8)andEq.(19)喙=友仇)0勿2(02。(22)SubstitutingEq.(13)intoEq.(21)(23)(24)l+45)也生+L%=0Pi血4%V12d%SubstitutingEq.(14)intoEq.(22),weget.222r2drf2dn1dv2.I175(22v2u)-+()=GV眩伊
11、,仇d%忆叱*SoWeobtaintheextremeequationscorrespondingtotheefficiencyJ.eEqs4(13)(14)(16)(17)(20)(23)-(26).Tosumup,wecanobtainaconclusionthatthestreamlinedipofthefanoutletsectionoughttokeepzeroJtiscalculatedbyuseofradialbalanceequation.2 OPTIMUMDESIGN2.1 Variables,ObjectiveFunctionandRestraintsThereaction
12、parametersalongradialdirectionweretakenfordesignvariables,soobjectivefunctionisF=minQ(j),(25)Where(j)isreactionparameters,jisthenumberofstreamlinesalongradialdirectionofblade.TheequationaboutdeterminedbyEq.(12).Somerestraintsshouldbetakenintoaccountfromdesigningandexperimentalcoursesoffan:Thattherea
13、ctionparametersmustkeeppositivealongtheradialdirection(i.e,0)wouldprotectseparatedflowattheroot,andthereactionparametersmustalsobelargerthan0.50forrelativespeedtokeepslowalIheroot.Atthetip,theseparametersmustbesmallerthan0.75,forthesakeoflittleleakage.Thegeometryexpandingdegreeofthefanpassagewayalon
14、gtheradialdirectionmustkeeplargerthan1.0,thatissin7/sin11,wherexandArarerespectivelytheflowanglesoffaninletandoutlet.Relativeinletandoutletnachesmustberestrainedbecausetheyinfluencefansoundi.eMmVO.3andMftJa03Axialpartofabsolutefanoutletspeed匕二mustbepositivealongradialdirection,otherwisetheseparatedf
15、lowwouldappear.2.2 ExampleandRenewtheOldConstructionThetype6102Qengineclingfanwasselectedtobeoptimized.Someparameters,suchasprofile,inletandoutletradii,bladewidth,andthenumberofbladesarethesameasthoseoforiginaltan.Oldfanbelongtofree-vortextype,itsbladeisverylongandrelativespeedofblade-tipislarge,soi
16、tsreactionparameterattipislargeandappearnegativeatroot,thesemajorityproblemscanbesolvedthroughamendingtheflowtype,optimumcalculatingwasbasedonratedIyoperatedode(engineangularmtationn=3000rmin,driveratiobetweenfanandcrankshaft1.18) .underthisconditiontheairflowis2.5ms,directionlesspressureortanis15(X
17、)Pa.ResultsareshownmFigs.14(thedottedlines),thedataaboutflowtype=0.6(soildlines)andfree-vortex(longdottedlines)arealsointheseFigures.r/rrrIrtFig.lDistributionofpressurefactorFig.2DistributionofcounteractionalongRadialdirectionradialdefectionPressureamplicationfactorschangegentlyalongradialdirectiona
18、ftertwistingparametersareoptimized,sotheenergylossissmallestamongthesethreetypcs,andextendingdegreeislargerthanthatofisoreaction,sotheworkfromthisformationisgreatestthanthatfromthelatterwiththesamewastedwork(Fig.1).ReactionfactorsofthethreetypeareshowninFig.2.onthisfigure,wecanfindthatthereactiongro
19、wsgraduallyfromroottotip,andthisparameteratrootislargerthan0.5,SOtheamplificationfactorsalongradialdirectiondifficultiesofoversmallreactionatrootthatemergedfromfree-vortextypearesurmounted.InFig.3,therelativeinletspeedafteroptimizationislowestamongthesethreeflowtypes,sothenoiselevelisthelowest,andfl
20、owlossesaretheSmaIleSLthefan,sefficiencyisthehighestbecausetherelativespeedattipislow.Becausetheaxialvelocityalongthebladeheightofisoreactionflowtypedropsgradually,theflowoutletangulardropsquickerthantheinletangular,thiscausesdisadvantageouseffectforflowpressureextensionbecause(=B?Pl)Oftipprobablyke
21、epsverysmallforthelongblade.Optimizationfortwistingparameterscanremedythisdefect.Inthisflowtype,changesslowlyalongthebladeheight(Fig.4).Accordingtoabovecalculatingresults,weredesignedthisfan.Fig.5contraststhenewresultsaboutstaticpressureefficiencywiththeoldones.andreal-linesindicatetheresultsofthene
22、wfanandthedish-linesexpressestheresultsoftheoldfan.Fig.3DistributionOfrelativespeedFig.4DistributionofrelativeflowangleAlongradialdirectionanglealongradialdirectionQ(w2ST)Fig.5Experimentalcurvesoffanseflfcicncy3 CONCLUSIONThattype6102Qengineclingfanwasredesignedindicatesthattheoptimumdesigningmethod
23、inthispapercansolvesomekeyproblemsexistinginlongbladeandfree-vortexflowtypes.Smeadvantagesofthismethodwerenotprovidedbyiso-reactionandfree-vortexflowtypes,forexamples,thesmalltwistingdegree,thelargerdifferencebetweenexitandinletflowangle,thelittleflowlossofpassagewayoffan,thestrongcapacityofwork,sma
24、llrelativespeedattip,thelargeextendingdegreeatroot,andsoon.Designparametersneedn,tbedeterminedartificiallybyuseofthismethod,andcalculatingresultsaremorerationaltoahighdegreethanothermethods.Ithistwistingmajorizationwascombinedwithairfoiloptimization,thefansperformancewouldbeimprovedfurther,andtherad
25、ialdirectionflowwouldbecontrolledeffectively.内燃机冷却风扇设计的新方法黄虹宾郑世琴刘淑艳阎为革C北京理工大学车辆工程学院,北京10081)摘要目的提出内燃机冷却风扇优化设计的数学模型。方法利用欧拉方程和澈积分原理,推导出内燃机冷却风扇沿径向气流参数优化设计的数学模型,建立了风扇叶片扭曲规律优化设计的数学方法。结果应用该方法对6102Q汽油机冷却风扇进行了优化设计,将计算结果与等还击系数流型和自由涡流型的计算结果做了比拟,并利用优化结果对该风扇作了重新设计,解决了长叶片风扇设计中的一些问题。结论不需人为给定设计参数,计算结果更为合理关健词冷却风扇;扭
26、曲规律;优化设计设计的关键在于对空气经过复杂的叶片以后的流动方向的判断所以风扇设计采用考夫曼理论,运用考夫曼理论设计风扇时认为气流经过叶片时参数在一维空间内与页面直径正比但是在通过叶面根部是对其产生负作用。之后,风机是根据简单的直线平衡方程。提高了计算精度完全利用径向平衡方程和等还击系数法确定的参数,叶片沿着径向的风流损失也一定程度的降低。本文提出了一种数学模型,为优化的气流计,沿着叶片高度利用欧拉方程和微积分的变异方程.!数学模型当微小物质AG经过风扇的两个相邻外表时根据欧拉方程就会求出对其产生的力,p=切(v2ur2vlurl)G,(1)假设角速度3的风扇,%是圆周速度,匕是风机进口的圆周
27、速度,rI风机进口半径、r2是风机出口的半径,对这些无导向叶片那么根据下面的公式计算,P=av2ur2G(2)我们建立rl和r2连续的流函数的方程,在沿叶片外表方向函数是恒定流。通道外表的区域被视为流道流动的外表。因此,G=2F,(3)把公式(3)代入到公式(2)然后得到,P=2万切v2ur2d(4)假设P是作用在风扇有效面积上的总功率,卅么Pl?就是有效功率得,E=2力J。(vP2)dl(5)如果VP是当功率为PI是风扇的理论转速,那么根据(4)(5)就可以得到风扇的有效机械效率,灯I012&、*,=vdrRol和R02分别是风扇进口处内外的半径,RO那么是风扇与壁面之间的间隙,在利用欧拉方
28、程就可求出风机的功,=3%g(7)在把这个方程代入热力学第二定律有,2(H2-H,)+(V2-V-2v2uu2=0令,Vl是风机进口的绝对速度的、v2是风机出口的绝对速度,Hl与H2分别是风机进口和出口的切向速度和法向速度把速度代入三角函数关系式,我们就能获得此时的相对运动的能量和方程的静态墙保持不变,W;+2Hlt-Hi)-+ul由于摩擦的存在实际出口也不是绝对的隔热,所以就会有热量的损失,W;=“2(%2-W;-u;-u;)严,(10)在风扇出口和进口处函值的变化差值就是外界对风机所做的有用功,于是就有下面的公式,W=I(H21-Ht).根据-:维空间的三角函数关系我们得到,V2“=“2-
29、(2(河-吟-U12+Un)-V2:7;Ji(11)在发动冷却风扇新型设计上,黄鸿斌等人把公式(11)与公式(6)联立得到,=j2L2Vp_(1+。2)就+2f2-v_吃产夕/%(根据流体的连续性,对于无引导的风机叶片有,vlf=VIr,vlr=Oqdr=中出,.小r;Jr)(13)qdr=(2v2rrf2r/W(14)公式中%=/我,为=/2.&是出口流量的速度因子,力是进口流量的速度因子。小,勿分别是进出口的流线曲率半径。对于公式(12)是有关于拉格朗日函数的极值问题,F=22Vax1-rf22iv2p-(y2)忌+-v-Vjr5+4(%)+2(r0)q0/2乃-%r0)pxvilrrl耳
30、-2(ru)p2v2irr22/G,(15)在公式中4(4)和4(%)是拉格朗日因子,下面方程是进出口处的空气密度与力之间的关系,p2=p1l+(+l)(2v)l-h(16)在上面的公式中%是出口的声速,2是进口的声速。F 刃 空 必Swzt GyP V2a2;8F d( Sj3 丸 3/F J 6F . 2切._ ()=r Q 叫 a - 徐门 d%为户 Gvff一丁-之式7)q2彩,一rf 2 = a为GV2 =材/02%?一(1 + 夕2)4+从公式(18)我们得到Vi=0, 联立方程(8)和(19)有,v2r 4(%)利用欧拉方程对公式(12)求出极值,Gv2rG吟。Fqi,r ;。
31、ru)p2 H=O(18)r GII % 2汇仁 rvrrfrf L =。,(19)T47H* )=-4 仇)p % - ;一4 (ro)Pvr- rj 1 ,* dr0片* 2/)不,尤2(4)外2%Gg。)l- -vt)L 曳(22)(K 一 1)切:+联立方程(13)和(21)有,也虫+%5)HL,+,也工O(23)%Pi%d%d%联立方程(14)和(22)我们就可以得到,当2/叱)学+为用光=0)Gvv2w%dr0%dr00),于此同时为了减小泄露量风扇边缘的泄露参数必须小于0.75而且根部的速度要相对小应变参数必须大于0.5.2沿径向程几何扩大的风扇比率必须大于1.0,也就是5m仅2
32、片S41在公式中四和乩分别是风机进出口处的气流角度。3进口和出口的相对速度必须要限制,因为他们影响风扇的声音例如:M0.3和Mm20.3.4轴在出口处的绝对速度必须沿着风扇的径向,否那么会出现气流的别离。2.2 引进和更新原有的结构以6102Q型发动机冷却风扇为例优化。一些参数,如型材、进出口半径、叶片宽度及叶片的相同的原有的凤扇。原有的风扇属于自便皮质类型,其刀刃很长,相对速度较大,所以它叶尖的还击应变参数又大又出现在大多数根部.这些问题可以通过修改流型解决。优化设计计算是基于间接的模拟操作(发动机的角速度n=3000r/mine,)交替的气流速度是2.5m/s,机盖板产生的压力为1500P
33、a,如下图:r/rfrrl图1.径向压力分布图2.扭曲力矩分布为了使能量损失到达最小,在对压力放大系数进行参数优化的时候沿着径向稍微放大,其中有三种根本类型,从最大损失功率方面看前者于后者有相同的峰值(图D.标准还击系数都呈现在(图2)上。从这个图上我们可以看到应变系数在根部逐渐变小,并且这个参数在根部会大于0.5,这是放大系数很难沿着径向放大的根源。然而涡流是风扇就可得到小的放大系数来解决这个难题(图3)相对入口速度优化是最低的这三个流量类型,所以噪声水平是最低的,和流量损失最小的,风扇的效率最高,因为相对速度较低,在尖端轴流压气机叶片高度的还击系数气流逐渐下降在出口下降速度比进口角速度快,
34、对流动压力的延伸造成的不利影响主要因为(zsq=a-4)的参数值非常小。在增长了叶片长度以后就可以弥补这个缺陷。慢慢的沿着刃高度的变化图4)。根据以上的计算结果,我们重新设计这风扇。新的研究结果比照图对静压效率与旧的、真实的线条显示结果的新风扇和过去线条表示结果如下:图3.相对速度的分布图4.相对流量的径向分布Q(msl)图5.风扇效率的实验曲线3 .结论以6102Q发动机冷却风扇优化设计为例,论文要解决的关键问题是涡流换气叶片中存在流量类型。该方法的优点是中小企业提供的还击系数不自由-旋涡流动力,扭曲程度越小,更大的差异,出口、进口气流小、小流量损失的风扇,曾大了通道的能力相对速度工作,小提示,庞大的延伸度在根部参数确实定.设计不必使用该方法人工挖孔,计算结果更加合理高度比其他方法。扭曲的优化设计将会进一步改良、径向流将得到有效控制。