《二甲双胍治疗糖尿病肾病的研究进展2023.docx》由会员分享,可在线阅读,更多相关《二甲双胍治疗糖尿病肾病的研究进展2023.docx(16页珍藏版)》请在课桌文档上搜索。
1、二甲双服治疗糖尿病肾病的研究进展2023糖尿病肾病(DN)是糖尿病微血管病变常见的并发症之一,可降低糖尿病患者的生活质量,是造成终末期肾衰竭的主要病因。二甲双肌是治疗糖尿病的主要药物之一,在糖尿病肾病治疗中起至关重要的作用。近年来,研究发现二甲双服不仅可以通过多种机制降低血糖,还可以阻止糖尿病肾病发展为终末期肾衰竭。多项研究发现二甲双服对于治疗糖尿病肾病具有临床疗效,应根据肾小球滤过率评估患者药物安全性。本文综述了二甲双服治疗糖尿病肾病的药理作用和作用机制的研究结果,旨在深入了解二甲双肌对糖尿病肾病的治疗作用,为糖尿病肾病的治疗方案提供参考。01二甲双服的药理作用1.1 降糖作用二甲双服的使用
2、可减少低血糖的发生及糖尿病相关死亡。二甲双服主要的作用机制是抑制肝脏葡萄糖生成,二甲双服通过抑制肝细胞线粒体电子传递链复合物,导致腺瞟岭核苜酸磷酸化电位受损,AMPK水平升高,通过AMPK激活来抑制肝糖异生。二甲双服也可以通过非APMK依赖性方式来抑制肝糖异生。MA等研究发现低剂量二甲双胭可以和早老素增强因子-2(Pen2)结合,进一步与溶酶体辅助蛋白1(ATP6AP1)形成复合物,通过与AMPK激活的溶酶体感应通路相交,发挥其保护作用。1.2 其他作用近年来二甲双肌对多种疾病具有一定的疗效,可降低T2DM的微血管并发症的发生,可用于肿瘤预防和复发,并且恢复多囊卵巢综合征(PCOS)的卵巢功能
3、。临床研究发现,二甲双服的疗效取决于肿瘤分期,可提高局部晚期肿瘤患者的生存期,对于远处转移的患者无明显改善作用。研究表明二甲双服可有效提高非排卵性月经周期的肥胖和非肥胖PCOS患者的妊娠率和活产率。二甲双服还具有降低尿蛋白排泄和保护肾功能的作用,一项动物实验发现二甲双服减轻糖尿病大鼠肾小球表面积、足细胞间隙增大的病理学改变,还可以通过下调富亮氨酸蛋白a2糖蛋白1(LRG1)和转化生长因子Bl(TGF-1)/激活素受体样激酶1(ALK1X13不良反应二甲双服最常见的不良反应为胃肠道反应,最严重的不良反应为二甲双胭性乳酸酸中毒。研究发现二甲双服的使用需根据肾脏功能来决定。在早期DN患者中,二甲双肌
4、发挥重要作用,可减轻T2DM患者的血糖和各种并发症的严重程度。然而在晚期肾损害患者中,二甲双服可能具有增加乳酸酸中毒的风险。临床上,乳酸酸中毒是一种可导致急性死亡的疾病,以动脉血乳酸水平5.0mmol/L(参考值为0.52.2mmolL)z血浆PH值7.35为主要特征。既往研究表明二甲双服在参考剂量范围内可安全使用,但在估计肾小球滤过率(eGFR)200gmin),伴水肿、高血压和肾功能受损;(5)DN5期为尿毒症期,其特征为蛋白尿进一步升高(300mg/g),GFR严重下降,血肌醉升高。04、二甲双服治疗DN的分子机制二甲双胭治疗DN的分子机制见图1,包括:提高Klotho蛋白水平改善DNx
5、通过促进AMPK介导的通路保护肾脏功能、通过抑制NF-KB介导的通路保护肾脏功能、通过抑制AGEs形成保护肾脏功能、通过调控微小RNA(miRNA)表达保护肾脏功能。4.1提高Klotho蛋白水平改善DN二甲双服作为主要治疗药物之一,通过调节Klotho蛋白水平保护肾脏的功能,研究发现二甲双肌可提高肾脏足细胞和Klotho蛋白的存活率,雷帕霉素(mT0R)是一种丝/苏氨酸蛋白激酶,参与生物合成、自噬和免疫介导过程。高糖可下调klotho表达,激活mT0R信号通路,加重糖尿病患者的肾脏损伤。SUN等指出TGF-1可促进胶原蛋白分泌及诱导沉积,p38MAPK可促进细胞增殖,进一步研究表明二甲双服可
6、阻断Klotho依赖性TGF-1p38丝裂原活化蛋白激酶(MAPK)通路阻止肾脏纤维化,在Klotho蛋白介导的信号通路作用下,从而延缓糖尿病患者肾脏功能障碍的加重。4.2 通过促进AMPK介导的通路保护肾脏功能二甲双服对DN有潜在保护作用,可以通过AMPK介导的信号通路缓解系膜细胞凋亡和足细胞损伤,保护肾脏免受氧化应激、炎症凋亡和上皮间质转化(EMTIAMPK是由催化-亚基和两个调节件口Y亚基组成,属于异源三聚体复合物,其介导生物能量代谢的调控,与糖脂代谢和蛋白质代谢有关。既往研究建立大鼠肾脏系膜细胞体外模型,采用基因沉默技术对AMPK/沉默调节蛋白1-叉头状转录因子01(SIRT1-Fox
7、OI)通路进行分析,发现AMPK可能参与调控DN的氧化应激和自噬。4.3通过抑制NF-KB介导的通路保护肾脏功能NF-B在体内参与很多生物反应,如细胞生长发育、免疫应答和炎症反应。DN患者肾脏病理可见大量炎症细胞浸润,主要以单核-巨噬细胞为主,伴有大量的炎症因子,如肿瘤坏死因子(TNF-白介素1(IL-1)和TGF-1,这些因子经过级联放大反应加重肾脏损伤,形成蛋白尿,NF-B可参与转录巨噬细胞,研究表明抑制NF-KB可减少炎症细胞对肾脏的损伤在高糖条件下会激活NF-KB,促进炎症因子损害肾脏。LING等研究发现白介素33(IL-33)属于IL-1家族,可显著抑制细胞生长发育,二甲双腑可能通过
8、NF-B通路降低血清IL-33浓度,抑制肾脏细胞凋亡,促进肾脏细胞增殖。4.4通过抑制AGEs形成保护肾脏功能AGEs是慢性高血糖引起的病理性糖基化增加的结果,在高糖条件下AGEs累积会诱导足细胞损伤、TGF-和系膜细胞凋亡的表达,促进肾脏衰老。AGEs会激活AGEs受体(AGEsreceptor,RAGE),通过不同的信号转导通路促进氧化应激、内质网应激和纤维化,加速肾脏的结构和功能破坏。ISHIBASHI等报道AGEs上调肾近端小管RAGEmRNA水平,促进肾小管细胞损伤。细胞培养和动物培养观察到二甲双服可能通过AMPK活化蛋白激酶抑制RAGE表达,从而抑制AGEs的形成和ROS的产生,出
9、现抑制肾小管炎症反应和纤维化。4.5通过调控miRNA表达保护肾脏功能二甲双服直接作用于miR-21靶点并调节基质金属蛋白酶(MMP9)表达实现肾脏保护作用,MMP9以酶原的形式存在,其作用是降解胶原纤维、抑制ECM聚集、维持细胞膜的稳定性、清除自由基,并参与组织正常生长和受损部位愈合的过程,糖尿病患者由于长期处于高血糖水平,MMP9的表达受抑制加重高血糖对肾脏的损害二甲双服作用于m很-21靶点,促进miR-21的表达,上调MMP9的水平,达到减少肾脏ECM聚集,减轻肾脏足细胞的消失。T2DM及其各种并发症已经严重危害人类健康。我国糖尿病患病率与日俱增,由于人们对T2DM的认识不足,对疾病引起
10、的健康状况未引起重视。DN是糖尿病的慢性并发症之一,最终会导致肾衰竭和尿毒症,二甲双服是治疗糖尿病较常见的药物之一,有延缓肾脏组织损伤的作用,目前多数临床试验研究和动物实验均证实二甲双服可通过各种信号通路治疗DNo然而,二甲双肌的具体不良反应仍需进一步研究,其是否同样适用于非DN还需进行探索。经过研究可以确定二甲双服在DN治疗中起着至关重要的作用,为T2DM患者缓解肾脏病变提供了良好的方案。参考文献1WUYL,DINGYPlTANAKAY,etal.Riskfactorscontributingtotype2diabetesandrecentadvancesinthetreatmentandp
11、reventionJ.IntJMedSci,2014,11(11):1185-1200.2 TANSY,MEIWONGJL,SIMYJ,etal.Type1and2diabetesmellitus:areviewoncurrenttreatmentapproachandgenetherapyaspotentialinterventiony.DiabetesMetabSyndr,2019z13(1):364-372.3 MASSIMINOE,IZZOA,RICCARDIG,etal.Theimpactofglucose-loweringdrugsonSarcopeniaintype2diabet
12、es:currentevidenceandunderlyingmechanismsJ.Cells,2021,10(8):1958.4 AFSARB,ELSURERR.Increasedrenalresistiveindexintype2diabetes:clinicalrelevance,mechanismsandfuturedirectionsJ.DiabetesMetabSyndr,2017,11(4):291-296.5 LVZQ,GUOYJ.MetforminanditsbenefitsforvariousdiseasesJ.FrontEndocrinol,2020z11:191.6
13、SONGANzZHANGCzMENGXF.Mechanismandapplicationofmetformininkidneydiseases:anupdateJ.BiomedPharmacother,2021,138:111454.7 LAMOIATE,SHULMANGI.CellularandmolecularmechanismsofmetforminactionJ.EndocrRev,2021,42(1):77-96.8 EIBLG,ROZENGURTE.Metformin:reviewofepidemiologyandmechanismsofactioninpancreaticcanc
14、erJ.CancerMetastasisRev,2021,40(3):865-878.9 HANYC,TANGSQ,LIUYT,etal.AMPKagonistalleviaterenaltubulointerstitialfibrosisviaactivatingmitophagyinhighfatandStreptozotocininduceddiabeticmiceJ.CellDeathDis,2021,12(10):925.10 AGIUSL,FORDBE,CHACHRASS.ThemetforminmechanismongluconeogenesisandAMPKactivation
15、:themetaboliteperspectivey.IntJMolSci,2020,21(9):3240.11 MAT,TIANXzZHANGBDzetal.Low-dosemetformintargetsthelysosomalAMPKpathwaythroughPEN2J.Nature,2022,603(7899):159-165.12 FORETZM,GUIGASB,VIOLLETB.Understandingtheglucoregulatorymechanismsofmetforminintype2diabetesmellitusJ.NatRevEndocrinoll2019z15(
16、10):569-589.13 HUAY,ZHENGY,YAOYR,etal.Metforminandcancerhallmarks:sheddingnewlightsontherapeuticrepurposingJ.JTranslMed,2023,21(1):403.14 XIAON,WANGJ,WANGT,etal.MetforminabrogatespathologicalTNF-producingBcellsthroughmTOR-dependentmetabolicreprogramminginpolycysticovarysyndromeJ.日ife,2022,11:e74713.
17、15 MOHAMMADHMF,GALALGOUDAS,ELADLMAletal.MetforminsuppressesLRG1andTGF1ALK1-inducedangiogenesisandprotectsagainstUltrastructuralchangesinratdiabeticnephropathyJ.BiomedPharmacother,2023,158:114128.16 PUGLIESEGzPENNOG,NATALIA,etal.Diabetickidneydisease:newclinicalandtherapeuticissues.Jointpositionstate
18、mentoftheItalianDiabetesSocietyandtheItalianSocietyofNephrologyonthenaturalhistoryofdiabetickidneydiseaseandtreatmentofhyperglycemiainpatientswithtype2diabetesandimpairedrenalfunctionJ.JNephrolz2020,33(1):9-35.17 FADDENEJ,LONGLEYC,MAHAMBREYT.Metformin-associatedlacticacidosisJ.BMJCaseRep,2021l14(7):
19、e239154.18 MARIANOF,BIANCONEL.Metformin,chronicnephropathyandlacticacidosis:amulti-facetedissueforthenephrologistJ.JNephroll2021,34(4):1127-1135.19 MAUROSDzFILIPPELLOA,SCAMPORRINOAzetal.Metformin:whenshouldwefearlacticacidosis?J.IntJMolSci,2022,23(15):8320.20 RAJASRYAV,ANJUMH,SURANIS.MetfOrminUSeand
20、metformin-associatedlacticacidosisinintensivecareunitpatientswithdiabetesJ.Cureus,2019,11(5):e4739.21 Thammavaranucuptk,PhonyangnokB,parapiboonW,etal.Metformin-associatedlacticacidosisandfactorsassociatedwith30-daymortalityJ.PLoSOne,2022z17(8):e0273678.22 ALVAREZCA,HALMEA,PUGHMJVzetal.Lacticacidosis
21、incidencewithmetformininpatientswithtype2diabetesandchronickidneydisease:aretrospectivenestedcase-controlstudyJ.EndocrinolDiabetesMetab,2021,4(1):e00170.23 TRINKLEYKE,ANDERSONHDzNAIRKV,etal.AssessingtheincidenceofacidosisinpatientsreceivingmetforminwithandwithoutriskfactorsforlacticacidosisJ.TherAdv
22、ChronicDis,2018,9(9):179-190.24 OSHIMAM,SHIMIZUM,YAMANOUCHIM,etal.Trajectoriesofkidneyfunctionindiabetes:aClinicopathologicalupdateJ.NatRevNephrolz2021z17(11):740-750.25 LIUP,ZHANGZDzLIY.Relevanceofthepyroptosis-relatedinflammasomepathwayinthepathogenesisofdiabetickidneydiseaseJ.FrontImmunolz2021,12
23、:603416.26 SAMSUN.Diabeticnephropathychallengesinpathogenesis,diagnosiszandtreatment!J.BiomedResIntz2021z2021:1497449.27 GUOJ,ZHENGHJ,ZHANGWT,etal.AcceleratedkidneyagingindiabetesmellitusJ.OxidMedCellLongev,2020,2020:1-24.28 PEREIRAPR,CARRAGETADF,OLIVEIRAPF,etal.Metabolomicsasatoolfortheearlydiagnos
24、isandprognosisofdiabetickidneydiseaseJ.MedResRev,2022,42(4):1518-1544.29JINJ,SHIYF,GONGJGretal.Exosomesecretedfromadipose-derivedstemcellsattenuatesdiabeticnephropathybypromotingautophagyfluxandinhibitingapoptosisinpodocyteJ.StemCellResTherz2019z10(1):95.30 SELBYNM,TAALMW.Anupdatedoverviewofdiabetic
25、nephropathy:diagnosis,prognosis,treatmentgoalsandlatestguidelinesJ.DiabetesObesMetab,2020,22(Suppl1):3-15.31XUEJ,WANGL,SUNZX,etal.Basicresearchindiabeticnephropathyhealthcare:astudyoftherenoprotectivemechanismofmetforminJ.JMedSyst,2019z43(8):1-13.32 TYPIAKM,KLESZAT,RACHBIKP,etal.Roleofklothoinhyperg
26、lycemia:itslevelsandeffectsonfibroblastgrowthfactorreceptors,glycolysis,andglomerularfiltrationJ.IntJMolSciz2021,22(15):7867.33 CHENXW,TANHS,XUJretal.Klotho-derivedpeptide6amelioratesdiabetickidneydiseasebytargetingWnt-cateninsignalingJ.KidneyInt,2022z102(3):506-520.34 WANGQ,RENDJ,LIYB,etal.Klothoat
27、tenuatesdiabeticnephropathyindb/dbmiceandameliorateshighglucose-inducedinjuryofhumanrenalglomerularendothelialcellsJ.CellCycle,2019z18(6/7):696-707.35 TYPIAKM,KLESZAT,RACHBIKP,etal.Roleofklothoinhyperglycemia:itslevelsandeffectsonfibroblastgrowthfactorreceptorszglycolysiszandglomerularfiltrationJ.In
28、tJMolSciz2021,22(15):7867.36 XUEJ,WANGL,SUNZX,etal.Basicresearchindiabeticnephropathyhealthcare:astudyoftherenoprotectivemechanismofmetforminJ.JMedSyst,2019,43(8):266.37 AL-KURAISHYHM,AL-GAREEBAI,SAADHM,etal.Thepotentialeffectofmetforminonfibroblastgrowthfactor21intype2diabetesmellitus(T2DM)J.Inflam
29、mopharmacology,2023,31(4):1751-1760.38 GULY,TANGHT,XUZX.HUangkUiC叩SUleincombinationwithmetforminamelioratesdiabeticnephropathyviatheKlothoTGF-1p38MAPKsignalingpathwayJ.JEthnopharmacol,2021,281:113548.39 RENAG,HARDIEDGzPEARSONER.ThemechanismsofactionofmetforminJ.Diabetologia,2017z60(9):1577-1585.40 R
30、ENHW,SHAOY,WUC,etal.MetforminalleviatesoxidativestressandenhancesautophagyindiabetickidneydiseaseviaAMPKSIRT1-FoxO1pathwayJ.MolCellEndocrinol,2020,500:110628.41 WANGWN,SUNWX,CHENGYLzetal.Roleofsirtuin-1indiabeticnephropathyJ.JMolMed,2019z97(3):291-309.42 XUJzLIULQzXULL,etal.Metforminalleviatesrenali
31、njuryindiabeticratsbyinducingSirt1FoxO1autophagicsignalaxisJ.ClinExpPharmacolPhysiolz2020,47(4):599-608.43 GAOYY,TIANW,ZHANGHN,etal.Canonicaltransientreceptorpotentialchannelsandtheirmodulators:biology,pharmacologyandtherapeuticpotentialsJ.ArchPharmRes,2021,44(4):354-377.44 SZREJDERM,RachubikP,Rogac
32、kaD,etal.MetfOrminreducesTRPC6expressionthroughAMPKactivationandmodulatescytoskeletondynamicsinpodocytesunderdiabeticconditionsJ.BiochimBiophysActaMolBasisDis,2020,1866(3):165610.45 YANGHM,XIETT,LIDR,etal.Tim-3aggravatespodocyteinjuryindiabeticnephropathybypromotingmacrophageactivationviatheNF-BTNF-
33、apathwayJ.MolMetabz2019z23:24-36.46 OPAZO-RIOSLzPLAZAA,SANCHEZMATUSY,etal.TargetingNF-Bbythecell-permeableNEMO-bindingdomainpeptideimprovesalbuminuriaandrenallesionsinanexperimentalmodeloftype2diabeticnephropathyJ.IntJMolSci,2020,21(12):4225.47 ZHANGL,NIUJS,ZHANGXMzetal.Metformincanalleviatethesympt
34、omofpatientwithdiabeticnephropathythroughreducingtheserumlevelofheyandIL-33J.OpenMedz2019,14:625-628.48 KANGZF,ZENGJW,ZHANGT,etal.HyperglycemiainducesNF-BactivationandMCP-1expressionviadownregulatingGLP-1Rexpressioninratmesangialcells:inhibitionbymetforminJ.CellBiolInt,2019,43(8):940-953.49 PATIALV,
35、KATOCHS,CHHIMWALJ,etal.TinosporaCordifoliaactivatesPPARpathwayandmitigatesglomerularandtubularcellinjuryindiabetickidneydiseaseJ.Phytomedicine,2021,91:153663.50 ABDELKADERNF,IBRAHIMSMzMOUSTAFAPE,etal.InosinemitigateddiabeticperipheralneuropathyviamodulatingGL01AGEsRAGENF-BNrf2andTGF邛PKCTRPV1signalin
36、gpathwaysJ.BiomedPharmacother,2022,145:112395.51 TANGD,HEWJ,ZHANGZTzetal.ProtectiveeffectsofHuang-Lian-Jie-DuDecoctionondiabeticnephropathythroughregulatingAGEs/RAGE/Akt/Nrf2pathwayandmetabolicprofilingindb/dbmiceJ.Phytomedicine,2022,95:153777.52 ISHIBASHIY1MATSUITzTAKEUCHIM,etal.Beneficialeffectsof
37、metforminandirbesartanonadvancedglycationendproducts(AGEs)-RAGE-inducedproximaltubularcellinjuryJ.PharmacolResz2012z65(3):297-302.53庞若宇,关美萍,郑宗基,等.二甲双服对糖基化终末产物诱导的成纤维细胞凋亡及相关蛋白caspase-3.Bax及Bcl-2表达的影响J.南方医科大学学报,2015,5(6):898-902.54 ZHULL,WANGHY,TANGT.EffectsofmiR-195ondiabeticnephropathyratsthroughtarg
38、etingTLR4andblockingNF-BpathwayJ.EurRevMedPharmacolSci,2021z25(3):1522-1529.55 XUJ,XIANGP,LIULQ,etal.Metformininhibitsextracellularmatrixaccumulation,inflammationandproliferationofmesangialcellsindiabeticnephropathybyregulatingH19miR-143-3pTGF-1axisJ.JPharmPharmacoll2020,72(8):1101-1109.56 LIUS,WUW,LIAOJzetal.MicroRNA-21:acriticalpathogenicfactorofdiabeticnephropathyJ.FrontEndocrinol(Lausanne),2022,13:895010.